Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
<span>a=Δω/Δt
</span><span>a=2π*Δf/Δt
</span><span>a=2π*(f2-f1)/Δt
</span>
<span>f1=f2-a*Δt/2π
</span><span>f2=800/60 rev/sec
</span><span>a=-42 rad/sec^2
</span><span>Δt=1.75sec
</span><span>so
f1=25 rev/sec
f1=1500 rev/min</span>
Answer:
The magnetic force on the section of wire is
.
Explanation:
Given that,
Current 
Length = 0.750 m
Magnetic field 
We need to calculate the magnetic force on the section of wire
Using formula of magnetic force


Since, 

Hence, The magnetic force on the section of wire is
.
Answer:
d = 6.43 cm
Explanation:
Given:
- Speed resistance coefficient in silicon n = 3.50
- Memory takes processing time t_p = 0.50 ns
- Information is to be obtained within T = 2.0 ns
Find:
- What is the maximum distance the memory unit can be from the central processing unit?
Solution:
- The amount of time taken for information pulse to travel to memory unit:
t_m = T - t_p
t_m = 2.0 - 0.5 = 1.5 ns
- We will use a basic relationship for distance traveled with respect to speed of light and time:
d = V*t_m
- Where speed of light in silicon medium is given by:
V = c / n
- Hence, d = c*t_m / n
-Evaluate: d = 3*10^8*1.5*10^-9 / 3.50
d = 0.129 m 12.9 cm
- The above is the distance for pulse going to and fro the memory and central unit. So the distance between the two is actually d / 2 = 6.43 cm
Answer:
0.114 kg or 114 g
Explanation:
From the diagram attaches,
Taking the moment about the fulcrum,
sum of clockwise moment = sum of anticlockwise moment.
Wd = W'd'
Where W = weight of the mass, W' = weight of the meter rule, d = distance of the mass from the fulcrum, d' = distance of the meter rule.
make W' the subject of the equation
W' = Wd/d'................ Equation 1
Given: W = mg = 0.0515(9.8) = 0.5047 N, d = (39.2-16) = 23.2 cm, d' = (49.7-39.2) = 10.5 cm
Substitute these values into equation 1
W' = 0.5047(23.2)/10.5
W' = 1.115 N.
But,
m' = W'/g
m' = 1.115/9.8
m' = 0.114 kg
m' = 114 g