Mechanical energy is the sum of potential energy and kinetic energy present in the components of a mechanical system. It is the energy associated with the motion and position of an object. All energy can be expressed in Joules (including thermal <span>energy</span>
Answer: Charles's law, Avogadro's law and Boyle's law.
Justification:
Boyle's law states that at constant temperature PV = constant
Charles law states that at constant pressure V/T = constant
Avogadro's law states that at constant pressure ant temperature, equal volume of gases contain equal number of moles: V/n = constant
Ideal gas law states PV/nT = constant => PV = nT*constant = PV = nTR
Answer:
d = 0.9 g/L
Explanation:
Given data:
Number of moles = 1 mol
Volume = 24.2 L
Temperature = 298 K
Pressure = 101.3 Kpa (101.3/101 = 1 atm)
Density of sample = ?
Solution:
PV = nRT (1)
n = number of moles
number of moles = mass/molar mass
n = m/M
Now we will put the n= m/M in equation 1.
PV = m/M RT (2)
d = m/v
PM = m/v RT ( by rearranging the equation 2)
PM = dRT
d = PM/RT
The molar mass of neon is = 20.1798 g/mol
d = 1 atm × 20.1798 g/mol / 0.0821 atm. L/mol.K × 273K
d = 20.1798 g/22.413 L
d = 0.9 g/L
B.
Explanation:
iehebrkee keen enensjsb sh sry need to get the points?
Answer:
3.89 kg P2O5 must be used to supply 1.69 kg Phosphorus to the soil.
Explanation:
The molecular mass of P2O5 is
P2 = 2* 31 = 62
O5 = 5 *<u> 16 = 80</u>
Molecular Mass = 142
Set up a Proportion
142 grams P2O5 supplies 62 grams of phosphorus
x kg P2O5 supplies 1.69 kg of phosphorus
Though this might be a bit anti intuitive, you don't have to convert the units for this question. The ratio is all that is important.
142/x = 62/1.69 Cross multiply
142 * 1.69 = 62x combine the left
239.98 = 62x Divide by 62
239.98/62 = x
3.89 kg of P2O5 must be used.