So power is equal to work over time and work is force times distance, you do 5 times 3 and get 15 dividing by 2 gives us 7.5 W answer c
Answer: 14.28 m/s
Explanation:
Assuming the girl is spinning with <u>uniform circular motion</u>, her centripetal acceleration
is given by the following equation:
(1)
Where:
is the <u>centripetal acceleration</u>
is the<u> tangential speed</u>
is the <u>radius</u> of the circle
Isolating
from (1):
(2)
<u />
Finally:
This is the girl's tangential speed
Answer:
We begin by solving the equation P = hρg for depth h: h=Pρg h = P ρ g . Then we take P to be 1.00 atm and ρ to be the density of the water that creates the pressure.
Answer:
v = 3(m1 - 2m2)/(m1 + m2)
Explanation:
Parameters given:
Velocity of first toy car with mass m1, u1 = 3 m/s (taking the right direction as the positive axis)
Velocity of second toy car with mass m2, u2 = -6 m/s (taking the left direction as the negative x axis)
Using conservation of momentum principle:
Total initial momentum = Total final momentum
m1*u1 + m2*u2 = m1*v1 + m2*v2
Since they stick together after collision, they have the same final velocity.
m1*3 + (m2 * -6) = m1*v + m2*v
3m1 - 6m2 = (m1 + m2)v
v = (3m1 - 6m2) / (m1 + m2)
v = 3(m1 - 2m2) / (m1 + m2)
Answer:
Explanation:
Given
Initial velocity of both snowball is 29.3 m/s
first snowball launch angle
Considering motion of snowball to be projectile
range is given by


R=70.87 m-----1
If second snowball is thrown at an angle of \phi

------2



or 
Thus