1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pochemuha
4 years ago
9

A right circular cylinder is inscribed in a sphere of radius r. Find the dimensions of such a cylinder with the largest possible

volume (your answer may depend on r).

Mathematics
1 answer:
Burka [1]4 years ago
3 0

Answer:

Largest volume in terms of r =  4r^3π/ 3√3 or you could write it as  4√3r^3π/9.

Step-by-step explanation:

You might be interested in
In ΔRST, t = 4.1 inches, r = 7.1 inches and ∠S=45°. Find the length of s, to the nearest 10th of an inch.
dem82 [27]

Answer:

The length of s is 5.1 inches to the nearest tenth of an inch

Step-by-step explanation:

In Δ RST

∵ t is the opposite side to ∠T

∵ r is the opposite side to ∠R

∵ s is the opposite side to ∠S

→ To find s let us use the cosine rule

∴ s² = t² + r² - 2 × t × r × cos∠S

∵ t = 4.1 inches, r = 7.1 inches, and m∠S = 45°

→ Substitute them in the rule above

∴ s² = (4.1)² + (7.1)² - 2 × 4.1 × 7.1 × cos(45°)

∴ s² = 16.81 + 50.41 - 41.1677568

∴ s² = 26.0522432

→ Take √ for both sides

∴ s = 5.10413981

→ Round it to the nearest tenth

∴ s = 5.1 inches

∴ The length of s is 5.1 inches to the nearest tenth of an inch

3 0
3 years ago
Read 2 more answers
Divide (x4 – 11x3 – 49x2 + 899x – 2506) ÷ (x – 8).
pickupchik [31]
Okay first make sure you change negative 8 to a positive 8. 
Set the problem up 8  -11 -49 899 -2506
                                    __________________
8  -11 -49   899    -2506
          -88 -1096    -1576
   ____________________
    -11 -137 -197     -4082

Your answer will be 
-11x^3 - 137x^2 - 197x - 4082
6 0
3 years ago
|. Identify the following Pōints of each values.Write your ans
Dmitry_Shevchenko [17]
<h2>✒️VALUE</h2>

\\ \quad  \begin{array}{c} \qquad \bold{Distance \: \green{ Formula:}}\qquad\\ \\ \boldsymbol{ \tt d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \end{array}\\  \begin{array}{l} \\ 1.)\: \bold{Given:}\: \begin{cases}\tt D(- 5,6), E(2.-1),\textsf{ and }F(x,0) \\ \tt DF = EF \end{cases} \\ \\  \qquad\bold{Required:}\:\textsf{ value of }x \\ \\ \qquad \textsf{Solving for }x, \\ \\  \tt  \qquad DF = EF \\ \\  \implies\small \tt{\sqrt{(x -(- 5))^2 + (0 - 6)^2} = \sqrt{(x - 2)^2 + (0 - (-1))^2}} \\ \\   \implies\tt\sqrt{(x + 5)^2 + 36 } = \sqrt{(x - 2)^2 + 1 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies\tt (x + 5)^2 + 36 = (x - 2)^2 + 1 \\ \\  \implies\tt x^2 + 10x + 25 + 36 = x^2 - 4x + 4 + 1 \\ \\ \implies \tt x^2 + 10x + 61 = x^2 - 4x + 5 \\ \\   \implies\tt10x + 4x = 5 - 61 \\ \\   \implies\tt14x = -56 \\ \\  \implies \red{\boxed{\tt x = -4}}\end{array}  \\  \\  \\  \\\begin{array}{l} \\ 2.)\: \bold{Given:}\: \begin{cases}\tt P(6,-1), Q(-4,-3),\textsf{ and }R(0,y) \\ \tt PR = QR \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }y \\ \\  \qquad\textsf{Solving for }y, \\ \\  \qquad\tt PR = QR \\ \\  \implies \tt\small{\sqrt{(0 - 6)^2 + (y - (-1))^2} = \sqrt{(0 - (-4))^2 + (y - (-3))^2}} \\ \\   \implies\tt\sqrt{36 + (y + 1)^2} = \sqrt{16 + (y + 3)^2 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies \tt \: 36 + (y + 1)^2 = 16 + (y + 3)^2 \\ \\  \implies\tt 36 + y^2 + 2y + 1 = 16 + y^2 + 6y + 9 \\ \\  \implies \tt \: y^2 + 2y + 37 = y^2 + 6y + 25 \\ \\  \implies \tt \: 2y - 6y = 25 - 37 \\ \\ \implies \tt -4y = -12 \\ \\   \implies\red{\boxed{ \tt y = 3}} \end{array}  \\  \\  \\ \begin{array}{l} \\ 3.)\: \bold{Given:}\: \begin{cases}\: A(4,5), B(-3,2),\textsf{ and }C(x,0) \\ \: AC = BC \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }x \\ \\  \qquad\textsf{Solving for }x, \\ \\   \qquad\tt AC = BC \\ \\ \implies\tt\small{\sqrt{(x - 4)^2 + (0 - 5)^2} = \sqrt{(x - (-3))^2 + (0 - 2)^2}} \\ \\ \implies\tt\sqrt{(x - 4)^2 + 25} = \sqrt{(x + 3)^2 + 4} \\ \\ \textsf{Squaring both sides yields} \\ \\ \implies\tt\:(x - 4)^2 + 25 = (x + 3)^2 + 4 \\ \\ \implies\tt\:x^2 - 8x + 16 + 25 = x^2 + 6x + 9 + 4 \\ \\ \implies\tt\:x^2 - 8x + 41 = x^2 + 6x + 13 \\ \\ \implies\tt-8x - 6x = 13 - 41 \\ \\\implies\tt -14x = -28 \\ \\ \implies\red{\boxed{\tt\:x = 2}} \end{array}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

7 0
2 years ago
7 less than three times m is n
Deffense [45]
If it's 4 less than 2 times a number if would be 
<span>2x - 4</span>
4 0
3 years ago
Read 2 more answers
Help please!
wlad13 [49]

Answer:

none of these, it should be 25%

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • PLEASE HELP TIMED!!!!
    15·2 answers
  • Find two vectors v1 and v2 whose sum is 〈−3,4〉〈−3,4〉, where v1 is parallel to 〈3,−3〉〈3,−3〉 while v2 is perpendicular to 〈3,−3〉〈3
    10·1 answer
  • You open your first savings account three months ago so far you have earned 9.80 and simple interest at an annual interest rate
    15·1 answer
  • A function in which each yvalue has only one corresponding x-value is called
    7·1 answer
  • Colin and Brian were playing darts. Colin scored 141. Brian scored 154 more than Colin. What was their combined score?
    7·1 answer
  • Over the summer, Delilah collected 75 books from her personal library that she had outgrown. She decided to donate them to the m
    7·2 answers
  • Which statement is true about the polynomial 3x2y2 − 5xy2 − 3x2y2 + 2x2 after it has been fully simplified? It has 2 terms and a
    11·2 answers
  • Identify the correct corresponding parts
    9·1 answer
  • I'll mark u as brainliest pls help with these 2 questions ​
    8·2 answers
  • HELPPPPPP PLLSLLSLSLLSSS!!!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!