Answer:
Heat absorbed by water = 3985.26 j
Explanation:
Given data:
Mass of water = 75 g
Initial temperature = 20.0°C
Final temperature = 32.7°C
Specific heat of water = 4.184 j/g.°C
Heat absorbed by water = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 32.7°C - 20°C
ΔT = 12.7 °C
Q = 75 g ×4.184 j/g.°C ×12.7 °C
Q = 3985.26 j
Aloha~! My name is Zalgo and I am here to help you out today. Those sort of conditions could be fore-boding/foreshadowing/warning that there will soon be a storm or that it will rain quite a lot. In the case of it being a storm, you should be a small room where there are no windows and nothing that is small that will fly towards you that could kill you.
I hope that this helps! :D
"Stay Brainly and stay proud!" - Zalgo
Answer: Option (B) is the correct answer.
Explanation:
When a fatty acid contains high number of double bonds then its unsaturation will also be high and hence, it will consume greater number of equivalents of hydrogen.
In corn oil, there are no unsaturated sites are present.
In olive oil, there is one unsaturated site with majority of oleic acid. In olive oil, there are more than 70% of total unsaturated oils.
In lard oil, there are around 60% of unsaturated oils.
In herring oil, there are highest number of saturated fatty acids and lowest polyunsaturated acids.
Thus, we can conclude that out of the given options, olive oils would consume the greatest number of equivalents of hydrogen when subject to catalytic hydrogenation.
1) Carbon-13:
Proton-6 Neutron-7 Electron-6
2)Atomic mass of element X:
(55*10+56*20+57*70)/100=56.6
Answer:
a simple voltaic cell is made by immersing one zinc plate and one copper plate inside water diluted sulfuric acid solution.