Answer:
A drought poses a huge threat to all life. If a drought occurred the entire food chain would disintegrate within months. There would be no water for any animals or plants. Small mammals would not be able to eat plants, and reptiles would not be able to the small animals, and so on. A drought can destroy an ecosystem in a short amount of time.
Water is only being moved into the air through water vapor, so the air will become hotter than water. Land is also not moving in the atmosphere and absorbing heat like air is, so air will also be hotter than land, depending on what the land is made of.
Through precipitation, water in the atmosphere can return to the hydrosphere or percolate into the ground to become groundwater—part of the geosphere. ... Water in the biosphere can be released into the atmosphere through transpiration in plants, or respiration in animals.
Explanation:
Answer:
13mL
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
HNO3 + KOH —> KNO3 + H2O
From the balanced equation above, we obtained the following data:
Mole ratio of the acid (nA) = 1
Mole ratio of the base (nB) = 1
Step 2:
Data obtained from the question.
This includes the following:
Molarity of the acid (Ma) = 6M
Volume of the acid (Va) =?
Volume of the base (Vb) = 39mL
Molarity of the base (Mb) = 2M
Step 3:
Determination of the volume of the acid.
Using the equation:
MaVa/MbVb = nA/nB, the volume of the acid can be obtained as follow:
MaVa/MbVb = nA/nB
6 x Va / 2 x 39 = 1/1
Cross multiply to express in linear form
6 x Va = 2 x 39
Divide both side by 6
Va = (2 x 39)/6
Va = 13mL
Therefore, the volume of the acid (HNO3) needed for the reaction is 13mL
Answer:
d. Because those chemicals are easily made when CO2 reacts with water, forming H2CO3 (via carbonic anhydrase
Answer:
The answer to your question is: letter c
Explanation:
Data
V1 = 612 ml n1 = 9.11 mol
V2 = 123 ml n2 = ?
Formula


n2 = 1.83 mol