1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgesh-ka [11]
2 years ago
5

If 0.15 mol of I2 vapor can effuses through an opening in a heated vessel in 36 sec, how long will it take 0.15 mol of Cl2 to ef

fuse under the same conditions?
Chemistry
1 answer:
marysya [2.9K]2 years ago
6 0

<u>Answer:</u> The amount of time required by chlorine gas to effuse is 19 seconds.

<u>Explanation:</u>

Rate of a gas is defined as the amount of gas displaced in a given amount of time.

\text{Rate}=\frac{n}{t}

To calculate the rate of diffusion of gas, we use Graham's Law.

This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:

\text{Rate of effusion}\propto \frac{1}{\sqrt{\text{Molar mass of the gas}}}

So,

\left(\frac{\frac{n_{Cl_2}}{t_{Cl_2}}}{\frac{n_{I_2}}{t_{I_2}}}\right)=\sqrt{\frac{M_{I_2}}{M_{Cl_2}}}

We are given:

Moles of iodine gas = 0.15 moles

Moles of chlorine gas = 0.15 moles

Time taken by iodine gas = 36 seconds

Molar mass of iodine gas = 254 g/mol

Molar mass of chlorine gas = 71 g/mol

Putting values in above equation, we get:

\left(\frac{\frac{0.15}{t_{Cl_2}}}{\frac{0.15}{36}}\right)=\sqrt{\frac{254}{71}}\\\\\frac{0.15}{t_{Cl_2}}\times \frac{36}{0.15}=1.89\\\\t=19s

Hence, the amount of time required by chlorine gas to effuse is 19 seconds.

You might be interested in
1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?
Sedbober [7]
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
5 0
2 years ago
Read 2 more answers
Determine how many liters 8.65 g of carbon dioxide gas would occupy at the following conditions.
VashaNatasha [74]
1) 6.17 liters

2)2.66 liters
3 0
3 years ago
What is the exact mass of one mole of carbon-12 atoms
love history [14]
One atom of carbon weighs exactly 12/6.022x10^23 = 1.9927x10^-23 grams<span>.</span>
3 0
3 years ago
How lead and iodine compound formed
ale4655 [162]
These are dissolved in water to form colourless solutions, and then mixed together. This mixing leads to a double displacement reaction, essentially resulting in the metals 'swapping' their places in the two compounds, producing lead (II) iodide, and potassium nitrate.
3 0
2 years ago
Magnesium and nitric acid to give magnesiumnitrate and water balancing equation​
marusya05 [52]
Balanced equation:

Mg + 2 HNO3 —> Mg(NO3)2 + H2

This is a metal + acid reaction giving salt and hydrogen (not water).
3 0
2 years ago
Other questions:
  • Consider a hypothetical reaction in which a and b are reactants and c and d are products. if 25 grams of a completely reacts wit
    7·1 answer
  • What is the molar mass of 81.50 g of gas exerting a pressure of 1.75 ATM on the walls of a pressure or 1.27 ATM on the walls of
    12·1 answer
  • Process in which water vapor turns to liquid
    7·2 answers
  • Jim takes 45 seconds to walk 180 meters north to a store what is jims meters per second
    9·2 answers
  • A block of dry ice (-40°C) is placed in contact with an ice cube (-10°C).
    6·1 answer
  • When electrons in a molecule are not found between a pair of atoms but move throughout the molecule, this is called Group of ans
    5·1 answer
  • Continue off my answer
    7·1 answer
  • Which element is most reactive among aluminium, boron, calcium and beryllium? Give reason.
    14·2 answers
  • How many moles of sulfur dioxide (SO2) are required to produce 5.0 moles of sulfur (S) according to the following balanced equat
    11·2 answers
  • Tính số nguyên tử oxi
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!