First the amount of work done in lifting up the snow ball to a height of 1.2m is equal to the potential energy of the ball after the lift.
Therefore mass× gravitational pull×height will give us the work done
=3.2kg ×9.8N/kg×1.2m
=37.632J
then, the work done over the 25m distance if found by the following formula: work done=force×distance
=1.0N×25m
=25J
On reaching the headless snowman you have to lift the ball a further 1.1m to place it as the head 2.3m high.
therefore this will be a change in potential energy which is equal to work done in lifting the ball the additional 1.1m
=m×g×h
=3.2kg×9.8N/kg×1.1m
=34.496J
To get the total we add the amount of work done in the various instances.
Answer: find the answer in the explanation
Explanation:
Average velocity is the average value of magnitude of initial velocity and final velocity.
If U = initial velocity and V = final velocity, then average velocity can be expressed as
Average velocity = ( U + V )/2
A vehicle who takes 60 minutes to cover 30 miles north and then 30 miles south and end up at the same place, has an average speed of 60 miles divided by 60 minutes, or 1 mile per minute.
Instantaneous velocity is the distance covered in a specific direction per time taken. Instantaneous velocity can be expressed as
Velocity = displacement/ time.
Uniform velocity occurs when we have a constant velocity. That is, when velocity does not change. When a vehicle travels in equal distances in equal intervals of time.
(a)
The formula is:
∑ F = Weight + T = mass * acceleration
as the elevator and lamp are moving downward, I choose downward forces to be
positive.
Weight is pulling down = +(9.8 * mass)
Tension is pulling up, so T = -63
Acceleration is upward = -1.7 m/s^2
(9.8 * mass) + -63 = mass * -1.7
Add +63 to both sides
Add (mass * 1.7) to both sides
(9.8 * mass) + (mass * 1.7) = 63
11.5 * mass = 63
mass = 63 / 11.5
Mass = 5.48 kg
(b)
Since the elevator and lamp are going upward, I choose upward forces to be
positive.
Weight is pulling down = -(9.8 * 5.48) = -53.70
Acceleration is upward, so acceleration = +1.7
-53.70 + T = 5.48 * 1.7
T = 53.70 + 9.316 = approx 63 N
The Tension is still the same - 63 N since the same mass, 5.48 kg, is being accelerated
upward at the same rate of 1.7 m/s^2
Answer:
1.3 × 10⁸ e⁻
Explanation:
When a honeybee flies through the air, it develops a charge of +20 pC = + 20 × 10⁻¹² C. This is a consequence of losing electrons (negative charges). The charge of 1 mole of electrons is 96468 C (Faraday's constant). The moles of electrons representing 20 pC are:
20 × 10⁻¹² C × (1 mol e⁻/ 96468 C) = 2.1 × 10⁻¹⁶ mol e⁻
1 mole of electrons has 6.02 × 10²³ electrons (Avogadro's number). The electrons is 2.1 × 10⁻¹⁶ moles of electrons are:
2.1 × 10⁻¹⁶ mol e⁻ × (6.02 × 10²³ e⁻/ 1 mol e⁻) = 1.3 × 10⁸ e⁻