The investigation using solid and liquid water to show that thermal energy is not the same as temperature is:
- Place a glass of water and a lake and both should be at the same temperature, find out if do they have the same amount of total thermal energy.
<h3>What is the response to the experiment above?</h3>
The response is No, because the lake is known to have a lot more particles than the glass of water and so they will not have the same thermal energy.
Note that the temperature is seen as the an average and thermal energy is seen to be the total. A glass of water can be able to have the same temperature as what we call Lake Superior, but the lake has a lot of thermal energy due to the fact that the lake has a lot of water molecules.
So the investigation using solid and liquid water to show that thermal energy is not the same as temperature is Place a glass of water and a lake and both should be at the same temperature, find out if do they have the same amount of total thermal energy.
Learn more about thermal energy from
brainly.com/question/19666326
#SPJ1
transverse wave
A transverse wave is a wave in which particles of the medium move in a direction perpendicular to the direction that the wave moves.
Question:
A chemistry student needs of 10 g isopropenylbenzene for an experiment. He has available 120 g of a 42.7% w/w solution of isopropenylbenzene in acetone. Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button.
Answer:
The answer to the question is as follows
The mass of solution the student should use is 23.42 g.
Explanation:
To solve the question we note the following
A solution containing 42.7 % w/w of isopropenylbenzene in acetone has 42.7 g of isopropenylbenzene in 100 grams of the solution
Therefore we have 10 g of isopropenylbenzene contained in
100 g * 10 g/ 42.7 g = 23.42 g of solution
Available solution = 120 g
Therefore the quantity to used from the available solution = 23.42 g of the isopropenylbenzene in acetone solution.
Molar mass Mg = 24.3 g/mol
1 mole mg ------------ 24.3 g
?? moles mg --------- 4.75 g
4.75 x 1 / 24.3 => 0.195 moles of Mg
hope this helps!
Chloride ions Cl –(aq) (from the dissolved sodium chloride) are discharged at the positive electrode as chlorine gas, Cl 2(g) sodium ions Na +(aq) (from the dissolved sodium chloride) and hydroxide ions OH –(aq) (from the water) stay behind - they form sodium hydroxide solution, NaOH(aq)