Answer:
<h2>6426000 mg</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
mass = Density × volume
From the question
63 mL = 63 cm³
We have
mass = 102 × 63 = 6426
But 1 g = 1000 mg
6426 g = 6426000 mg
We have the final answer as
<h3>6,426,000 mg</h3>
Hope this helps you
There will be needed 982.35 mL of solution to obtain 16.1 grams of the salt.There will be needed mL of
Why?
In order to calculate how many milliliters are needed to obtain 16.1 grams of the salt given its concentration, we first need to find its chemical formula which is the following:

Now that we know the chemical formula of the substance, we need to find its molecular mass. We can do it by the following way:

We have that the molecular mass of the substance will be:

Therefore, knowing the molecular mass of the substance, we need to calculate how many mols represents 16.1 grams of the same substance, we can do it by the following way:


Finally, if we need to calculate how many milliliters are needed, we need to use the following formula:


Now, substituting and calculating, we have:

Henc, there will be needed 982.35 mL of solution to obtain 16.1 grams of the salt.
Have a nice day!
11- Form of energy that can be reflected or emitted from objects through electrical or magnetic waves.
12-Energy that is caused by moving electric charges.
13-Energy stored in the bonds of chemical compounds.
I only know those. Sorry hoped I helped a little! :)
This problem could be solved through the Graham’s law of
effusion (also known as law of diffusion). This law states that the ratio of
the effusion rate of the first gas and effusion rate of the second gas is
equivalent to the square root of the ratio of its molar mass. Thus the answer
would be 0.1098.
Agar is used to assist establish an anaerobic environment that promotes nitrate reduction.
Nitrate Reduction test:
- The nitrate in the broth is converted to nitrite by organisms that can produce the nitrate reductase enzyme, which can then be further converted to nitric oxide, nitrous oxide, or nitrogen.
- Anaerobic respiration and denitrification are two processes that can convert nitrate to a variety of compounds.
- While denitrification only reduces nitrate to molecular nitrogen, anaerobic respiration employs nitrate as the bacterium's final electron acceptor, reducing it to a range of chemicals.
- The nitrate reduction test is based on the detection of nitrite and its capacity to produce a red precipitate (prontosil), which is a water-soluble azo dye, when it combines with sulfanilic acid to create a complex (nitrite-sulfanilic acid).
Learn more about the Nitrate reduction test with the help of the given link:
brainly.com/question/11181586
#SPJ4