First, we need to find the number of protons, which is the total mass divided by the mass of one proton:

protons
Then, the total charge is the number of protons times the charge of a single proton:
Answer: I didn't see a difference because the large ball's vertical displacement and velocity are the same as the small one's.
Explanation:
Find the force that would be required in the absence of friction first, then calculate the force of friction and add them together. This is done because the friction force is going to have to be compensated for. We will need that much more force than we otherwise would to achieve the desired acceleration:

The friction force will be given by the normal force times the coefficient of friction. Here the normal force is just its weight, mg

Now the total force required is:
0.0702N+0.803N=0.873N
Option 2 is your answer :)
Electrical energy.................