1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nika2105 [10]
2 years ago
6

How to calculate F2? m=16.4kg f1= 2.7n angle=34.4

Physics
2 answers:
Feliz [49]2 years ago
8 0
2 would be your answer
V125BC [204]2 years ago
4 0
Option 2 is your answer :)
You might be interested in
A speed boat increases its speed uniformly from vi = 20.0 m/s to vf = 30.0 m/s in a distance of 2.00 x 10^2m. (a) Draw a coordin
pychu [463]

a) See graph in attachment

b) The suvat equation to use is v_f^2 - v_i^2 = 2as

c) The acceleration is a=\frac{v_f^2-v_i^2}{2s}

d) The acceleration is 1.25 m/s^2

e) The time needed is 8 s

Explanation:

a)

For this part, find in attachment the diagram representing this situation.

Since we are not given any particular direction for the motion, we choose the x-direction as the direction of motion of the boat.

Then we have the following:

- The initial position of the boat is x_i = 0, the origin

- The  final position of the boat is x_f = 200 m

- The initial velocity of the boat is v_i = 20.0 m/s

- The final velocity of the boat is v_f = 30.0 m/s

Note that the arrow representing the final velocity is longer than that of the initial velocity, since the final velocity is larger.

b)

The motion of the speed boat is a uniformly accelerated motion (motion at constant acceleration), therefore we can use one of the suvat equations. In this particular problem, we know the following quantities:

v_i = 20.0 m/s, the initial velocity

v_f = 30.0 m/s, the final velocity

s = x_f - x_i = 200 m, the  displacement of the boat

Therefore, the equation that best can be use to find the acceleration is

v_f^2 - v_i^2 = 2as

where

a is the acceleration

c)

Now we have to solve the equation

v_f^2 - v_i^2 = 2as

In order to find the acceleration.

This can be done by dividing both terms by 2s: this way, we find

\frac{v_f^2-v_i^2}{2s}=\frac{2as}{2s}

And so the acceleration is

a=\frac{v_f^2-v_i^2}{2s}

d)

Now we can use the equation found in part c) in order to find the acceleration.

We have the following data:

v_i = 20.0 m/s, the initial velocity

v_f = 30.0 m/s, the final velocity

s = x_f - x_i = 200 m, the  displacement of the boat

And substituting into the equation,

a=\frac{30^2-20^2}{2(200)}=1.25 m/s^2

e)

In order to find the time it takes the boat to travel the given distance, we can use the following suvat equation:

v_f = v_i + at

where:

v_i is the initial velocity

v_f is the final velocity

a is the acceleration

t is the time

Here we have:

v_i = 20.0 m/s

v_f = 30.0 m/s

a=1.25 m/s^2

Solving for t, we find:

t=\frac{v_f-v_i}{a}=\frac{30-20}{1.25}=8 s

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

8 0
3 years ago
The football player running towards the goal line has
blagie [28]

the football player has speed

8 0
3 years ago
Read 2 more answers
Consider a block on a spring oscillating on a frictionless surface. The amplitude of the oscillation is 11 cm, and the speed of
IRISSAK [1]

Answer:

The angular frequency of the block is ω = 5.64 rad/s

Explanation:

The speed of the block v = rω where r = amplitude of the oscillation and ω = angular frequency of the oscillation.

Now ω = v/r since v = speed of the block = 62 cm/s and r = the amplitude of the oscillation = 11 cm.

The angular frequency of the oscillation ω is

ω = v/r

ω = 62 cm/s ÷ 11 cm

ω = 5.64 rad/s

So, the angular frequency of the block is ω = 5.64 rad/s

6 0
3 years ago
When a burning stick of increase is moved fast in a circle a circle of red light is seen.​
anzhelika [568]

Answer:

The impression of the image on the retina lasts for about 1/16th of a second after the removal of the object. If a burning stick of incense is revolved at a rate of more than sixteen revolutions per second, we see a circle of red light due to persistence of vision.

Explanation:

7 0
2 years ago
a car accelerates uniformly from rest to a speed of 51.9mi/h in 9.37s. find the constant acceleration of the car. answer in unit
Darina [25.2K]
Here is my step-by-step-work. Let me know if you have any questions! :)

3 0
2 years ago
Other questions:
  • In an experiment, the independent variable is what?
    9·2 answers
  • The tissue of living organisms does not contain solid metal, like a copper wire or a zinc plate. However, electric current flows
    5·1 answer
  • A trapeze artist, with swing, weighs 800 N; he is momentarily heldto one side by his partner using a horizontal force so that th
    7·1 answer
  • Which statement best describes how waves carry energy?
    11·2 answers
  • A plane flying against a jet stream will travel faster than a plane traveling with a jet stream. Please select the best answer f
    9·2 answers
  • A car is designed to get its energy from a rotating
    13·1 answer
  • Why is an important to come up with a plan for how are you to respond to negative peer pressure before the situation happens
    11·1 answer
  • An elevator is moving is an upwards
    15·1 answer
  • What is another way to describe the vector 100 m/s down
    5·1 answer
  • Tại sao khi bị sì hơi quả bóng bay sẹp lại?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!