The given formula contains two carbon along with six hydrogen and an oxygen.
The possible isomers from
are ethanol and dimethyl ether.
Ehtanol is an alcohol containing a hydroxyl group whereas dimethyl ether is an ether containing an oxygen between two methyl
The structure of two isomers are:
Answer:
Barium has the same number of valence electrons as calcium
Explanation:
Valence electrons is the number of electrons of an atom on the outer shell.
Those valence electrons can participate in the formation of a chemical bond (if the outer shell is not closed); in a single covalent bond, both atoms in the bond contribute one valence electron in order to form a shared pair.
<u>Calcium</u> is an atom, part of group 2, called the alkaline earth metals. The alkaline earth metals have 2 valence electrons.
<u>Sulfur </u>is part of a group 16, called the chalcogens or oxygen family. Those atoms have 6 valence electrons. They can form a bound with atoms of group 2 such as calcium, but do not have the same number of valence electrons.
<u>Potassium</u> is part of group 1, called the alkali metals or lithium family. Those atoms have 1 valence electrons. That means Potassium do not have the same number of valence electrons like calcium.
<u>Neon</u> is part of group 18, the noble gasses. Those are stable atoms, which means they have 8 valence electrons. They do not have the same number of valence electrons like Calcium.
<u>Barium</u> an atom, part of group 2, called the alkaline earth metals. The alkaline earth metals have 2 valence electrons. Calcium is also part of this group.
This means barium has the same number of valence electrons as Calcium.
Answer:PLEASE MARK BRAINIEST
The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy. Today, this process uses instruments with a grating that spreads out the light from an object by wavelength. This spread-out light is called a spectrum. Every element — and combination of elements — has a unique fingerprint that astronomers can look for in the spectrum of a given object. Identifying those fingerprints allows researchers to determine what it is made of.
That fingerprint often appears as the absorption of light. Every atom has electrons, and these electrons like to stay in their lowest-energy configuration. But when photons carrying energy hit an electron, they can boost it to higher energy levels. This is absorption, and each element’s electrons absorb light at specific wavelengths (i.e., energies) related to the difference between energy levels in that atom. But the electrons want to return to their original levels, so they don’t hold onto the energy for long. When they emit the energy, they release photons with exactly the same wavelengths of light that were absorbed in the first place. An electron can release this light in any direction, so most of the light is emitted in directions away from our line of sight. Therefore, a dark line appears in the spectrum at that particular wavelength.
Explanation:
Answer: 84.56L
Explanation:
Initial volume of gas V1 = 100L
Initial temperature T1 = 135°C
Convert temperature in Celsius to Kelvin
( 135°C + 273 = 408K)
Final temperature T2 = 72°C
( 72°C + 273= 345K)
Final volume V2 = ?
According to Charle's law, the volume of a fixed mass of a gas is directly proportional to the temperature.
Mathematically, Charles' Law is expressed as: V1/T1 = V2/T2
100L/408K = V2/345K
To get the value of V2, cross multiply
100L x 345K = V2 x 408K
34500 = V2 x 408K
V2.= 34500/408
V2 = 84.56L
Thus, the volume of the gas becomes 84.56 liters