Answer: The statement conjugate base of hydrofluoric acid is weaker than that of acetic acid is most likely true.
Explanation:
A strong acid upon dissociation gives a weak conjugate base. This can also be said as stronger is the acid, weaker will be its conjugate base or vice-versa.
Hydrofluoric acid is a strong base as it dissociates completely when dissolved in water.
For example, 
The conjugate base is
which is a weak base.
Acetic acid is a weak acid as it dissociates partially when dissolved in water. So, the conjugate base of acetic acid is a strong base.

Thus, we can conclude that the statement conjugate base of hydrofluoric acid is weaker than that of acetic acid is most likely true.
Answer:
V = 240.79 L
Explanation:
Given data:
Volume of butane = ?
Temperature = 293°C
Pressure = 10.934 Kpa
Mass of butane = 33.25 g
Solution:
Number of moles of butane:
Number of moles = mass/ molar mass
Number of moles = 33.25 g/ 58.12 g/mol
Number of mole s= 0.57 mol
Now we will convert the temperature and pressure units.
293 +273 = 566 K
Pressure = 10.934/101 = 0.11 atm
Volume of butane:
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
V = nRT/P
V = 0.57 mol × 0.0821 atm.L/ mol.K ×566 K / 0.11 atm
V = 26.49 L/0.11
V = 240.79 L
C. If the mass or length of substance changes it's extensive
The liters in 3.25 g of ammonia 4.28 L
<u><em>calculation</em></u>
Step 1: find moles of ammonia
moles = mass÷ molar mass
From periodic table the molar mass of ammonia (NH₃) = 14 +(1×3 ) = 17 g/mol
3.25 g÷ 17 g/mol = 0.191 moles
Step 2: find the number of liters of ammonia
that is at STP 1 moles = 22.4 L
0.191 moles = ? L
<em>by cross multiplication</em>
={( 0.191 moles ×22.4 L) / 1 mole} = 4.28 L