Answer:
1.0 × 10⁻⁹ M.
Explanation:
<em>∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.</em>
[H₃O⁺] = 1.0 x 10⁻⁵ M.
<em>∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺]</em> = 10⁻¹⁴/(1.0 x 10⁻⁵ M) = <em>1.0 × 10⁻⁹ M.</em>
<h2><u>
Answer:</u></h2>
(These are not rounded to the correct decimal)
130.94 atm
13,266.6 kPa
99,571.4 mmHg
<h2><u>
Explanation:</u></h2>
<u></u>
PV = nRT
V = 245L
P = ?
R = 0.08206 (atm) , 8.314 (kPa) , 62.4 (mmHg)
T = 273.15 + 27 = 300.15K
n = 1302.5 moles
How I found (n).
5.21kg x 1000g/1kg x 1 mole/4.0g = 1302.5 moles
Now, plug all the numbers into the equation.
Pressure in atm = (1302.5)(0.08206)(300.15) / 245 = 130.94 atm (not rounded to the correct decimal)
Pressure in kPa = (1302.5)(8.314)(300.15) / 245 = 13,266.6 kPa (not rounded to the correct decimal)
Pressure in mmHg = (1302.5)(62.4)(300.15) / 245 = 99,571.4 mmHg (not rounded to the correct decimal)
Acid A, assuming the two acids have the same pH. The M stands for molarity which is how concentrated a substance is (basically the higher the molarity the more concentrated the acid is). However, pH refers to how acidic a substance is. If the two acids have different levels of acidity, the answer may be different.
Answer:
- <em><u>Step 2 (the slow step).</u></em>
Explanation:
The rate-determining step is always the slow step of a mechanism.
That is so, because it is the slow step which limits the reaction.
Imaging that for assembling a toy you have process of three steps:
- 1. order ten pieces, which you can do in 1 minute: meaning that you can order order the pieces for 60/1 = 60 toys in 1 hour.
- 2. glue the pieces and hold the toy until the glue hardens, which takes 1 hour: meaning finishingh 1 toy in 1 hour.
- 3. pack the toy, which takes 2 minutes: meaning that you can pack 60/2 = 30 toys in one hour.
The time to glue and hold one toy until the glue hardens determines that you can assemble 1 toy in 1 hour and not 60 toys or 30 toys.
Thus, the step that determines the rate at which the reaction happens is the slowest step: step 2.
Answer:
7.5 M
Explanation:
In order to find a solution's molar concentration, or molarity, you need to determine how many moles of solute, which in your case is sodium sulfate,
Na
2
SO
4
, you get in one liter of solution.
That is how molarity was defined -- the number of moles of solute in one liter of solution.
So, you know that you have
0.090
moles of solute in
12 mL
of solution. Your goal here will be to scale up this solution by using this information as a conversion factor to help you determine the number of moles of solute present in