Answer:
where are those two images which you have sent
Molarity is a measure of a solution's concentration calculation by getting the ratio of the number of moles of solute to the total volume of solution. This has a unit of M or molar, equivalent to mole/L.
It is more important and meaningful to know the molarity rather than if the solution is dilute or concentrated because molarity gives the QUANTITATIVE approach of knowing the concentration while the second one only gives us the QUALITATIVE description of the solution. Hence, we are able to calculate for other unknown parameters if we have the molarity known.
The volume<span> of </span>gas<span> because of the </span>increase<span> and decrease in the speed in which the molecules bounce around. ... Boyle's Law states that if temperature stays the same, the </span>amount of<span> space a </span>gas takes up will increase<span> if the </span>pressure<span> decreases. The </span>amount of gas<span> will take up less space if the </span>pressure<span> is increased. this would be the correct answer </span>
I'm pretty sure all 4 are subatomic particles but if i had to guess i'd be Photons
Answer:
1.7 * 10^-5
Explanation:
1- get the number of moles of PbCl2:
number of moles = mass / molar mass
number of moles = 0.45 / 278.1 = 1.618 * 10^-3 moles
2- get the concentration of Pb2+:
molarity = number of moles of solute / volume of solution in liters
molarity = (1.618 * 10^-3) / (0.1) = 0.0162 M
3- getting concentration of Cl-:
<span>PbCl2(s) <==> Pb2+(aq) + 2Cl-(aq)
</span>We can note that:
For a certain amount of Pb2+ formed, twice this amount of Cl- is formed.
This means that:
for 0.0162 M of Pb2+, 2*0.0168 = 0.0324 M of Cl- is formed
4- getting Ksp:
Ksp = [Pb2+][Cl-]²
Ksp = (0.0162)*(0.0324)²
Ksp = 1.7 * 10^-5
Hope this helps :)