<span>C) <u>Colloids</u></span><span>
Colloids have small non-dissolved particles that flow around in the mixture. These particles do not settle over time. When a light is shined on colloids the scattering characteristic of the Tyndall effect are visable.</span>
Answer:
The majority of chemical processes are reactions that occur in solution. Important industrial processes often utilize solution chemistry. "Life" is the sum of a series of complex processes occurring in solution. Air, tap water, tincture of iodine, beverages, and household ammonia are common examples of solutions.
four types of solution:
Turpentine as a solvent are used in the production of paints, inks and dyes. ↔Water as a solvent is used in the making of food, textiles, soaps and detergents. ↔Alloys are solid solutions that are used in the manufacture of cars, aerospace and other vehicles.
Explanation:
can you pls make me brainliest
Out of the following given choice:
A. The increase in
the airspace occupied by vinegar molecules
B. The chemical reaction with nerves, which is slower than
other sensory processes
C. Attractive forces between the air and vinegar molecules
D. Random collisions between the air and vinegar molecules.
<span>The answer is
D. While the particles may be
moving at high velocities even at room
temperatures, the delay is due to the numerous collisions
between the vinegar molecules and the air molecules.This changes the vinegar’s
molecules directions from straight lines to random unpredictable paths</span>
Answer:
The average rate is 2.84 X 10⁻³ Ms⁻¹
Explanation:
Average rate = -0.5*Δ[HBr]/Δt
given;
[HBr]₁ = 0.590 M
[HBr]₂ = 0.465 M
Δ[HBr] = [HBr]₂ - [HBr]₁ = 0.465 M - 0.590 M = -0.125 M
Δt Change in time = 22.0 s
Average rate = -0.5*Δ[HBr]/Δt
Average rate = - 0.5(-0.125)/22
Average rate = 0.00284 Ms⁻¹ = 2.84 X 10⁻³ Ms⁻¹
Therefore, the average rate is 2.84 X 10⁻³ Ms⁻¹