Answer: A
Explanation:
A contour interval is a vertical distance or difference in elevation between contour lines. Index contours are bold or thicker lines that appear at every fifth contour line.
There are two N≡N bonds and three H–H bonds are in reactants.
Given:
The reaction between nitrogen gas and hydrogen gas.

To find:
Bonds on the reactant side
Solution:

Reactants in the reaction = 
The bond between nitrogen atoms in single
molecule = N≡N (triple bond)
Then in two
molecules = 2 N≡N (triple bonds)
The bond between hydrogen atoms in single
molecule = H-H (single bond)
Then in three
molecules = 3 H-H (single bonds)
Product in the reaction =
The bonds between nitrogen and hydrogen atoms in single
molecule = 3 N-H (single bond)
Then in two
molecules = 6 N-H (single bonds)
So, there are two N≡N bonds and three H–H bonds are in reactants.
Learn more about reactants and products here:
brainly.com/question/21517037?referrer=searchResults
brainly.com/question/20602904?referrer=searchResults
Answer:
In 4.5 grams of tetraphosphorus decoxide we have 3.85 * 10^22 phosphorus atoms
Explanation:
Step 1: Data given
tetraphosphorus decoxide = P4O10
Molar mass of P4O10 = 283.89 g/mol
Mass of P4O10 = 4.5 grams
Number of Avogadro = 6.022 * 10^23 / mol
Step 2: Calculate moles of P4O10
Moles P4O10 = mass P4O10 / molar mass P4O10
Moles P4O10 = 4.5 grams / 283.89 g/mol
Moles = 0.016 moles
Step 3: Calculate moles of P
For 1 mol P4O10 we have 4 moles of phosphorus
For 0.016 moles P4O10 we have 4*0.016 = 0.064 moles P
Step 4: Calculate number of P atoms
Number of P atoms = moles P * number of Avogadro
Number of P atoms = 0.064 moles * 6.022*10^23
Number of P atoms = 3.85 * 10^22 atoms
In 4.5 grams of tetraphosphorus decoxide we have 3.85 * 10^22 phosphorus atoms
Answer:
The kilogram is the standard unit of mass.
<span>Higher energy = shorter wavelength
Frequency is one cycle over an amount of time (seconds)
So higher frequency = higher energy = shorter wavelength</span>