Option(a) the mass of cart 2 is twice that of the mass of cart 1 is the right answer.
The mass of cart 2 is twice that of the mass of cart 1 is correct about the mass of cart 2.
Let's demonstrate the issue using variables:
Let,
m1=mass of cart 1
m2=mass of cart 2
v1 = velocity of cart 1 before collision
v2 = velocity of cart 2 before collision
v' = velocity of the carts after collision
Using the conservation of momentum for perfectly inelastic collisions:
m1v1 + m2v2 = (m1 + m2)v'
v2 = 0 because it is stationary
v' = 1/3*v1
m1v1 = (m1+m2)(1/3)(v1)
m1 = 1/3*m1 + 1/3*m2
1/3*m2 = m1 - 1/3*m1
1/3*m2 = 2/3*m1
m2 = 2m1
From this we can conclude that the mass of cart 2 is twice that of the mass of cart 1.
To learn more about inelastic collision visit:
brainly.com/question/14521843
#SPJ4
Answer:
The incident light ray which lands upon the surface is said to be reflected off the surface. The ray that bounces back is called the reflected ray. If a perpendicular were to be drawn on reflecting surface, it would be called normal. The figure below shows the reflection of an incident beam on a plane mirror.
Explanation:
This is called the Phi Phenomenon.
This is an illusion of movement created when two or more adjacent lights blink on and off in quick succession; when two adjacent stationary lights blink on and off in quick succession; we perceive a single light moving back and forth between them. It is an optical illusion of perceiving a series of still images, when viewed in rapid succession, as continuous motion.
Answer:
Explanation:
Usually the angle between the y axis and x axis is 90° and we know that for furthest travel the degree angle must be 45° with the horizontal, Mo must release the ball about halfway between straight ahead and straight up
Answer:
B) The cosmic background radiation is expected to contain spectral lines of hydrogen and helium, and it does.
Explanation: