Given:
density of air at inlet, 
density of air at inlet, 
Solution:
Now,

(1)
where
A = Area of cross section
= velocity of air at inlet
= velocity of air at outlet
Now, using eqn (1), we get:

= 1.14
% increase in velocity =
=114%
which is 14% more
Therefore % increase in velocity is 14%
D transferring electrons because that causes electricity
1) The average velocity is 
2) The instantaneous velocity is 
Explanation:
1)
The average velocity of an object is given by

where
d is the displacement
t is the time elapsed
In this problem, the position of the particle is given by the function

where t is the time.
The position of the particle at time t = 6 sec is

While the position at time t = 12 sec is

So, the displacement is

And therefore the average velocity is

2)
The instantaneous velocity of a particle is given by the derivative of the position vector.
The position vector is

By differentiating with respect to t, we find the velocity vector:

Therefore, the instantaaneous velocity at any time t can be found by substituting the value of t in this expression.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Charge of electron = 1.6×10−¹⁹
(1.6×10−¹⁹)(1×10²) (2e)
= 3.2×10−¹⁷ J
Wave is a disturbance or energy that propagate through medium from one point to other point
So basically it is a flowing energy that flows into the medium and hence medium particles start oscillating about their mean position to and fro.
This motion of medium particles or this to and fro motion is about their mean position and this will always be cyclic or periodic motion
This means the disturbance or energy continuously flow through the medium such that it will change the position of medium particle and this will be cyclic in order
For an example

so here above equation of wave is a travelling wave in which displacement of medium particle from its mean position is given by "y"
Now we can see that this disturbance depends upon the sine function and it will repeat its same position after every 2 pi time interval as it is cyclic function for this value
Due to this phenomenon of repeatation of its same position we can say that it is disturbance of wave is cyclic.