1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana [24]
3 years ago
11

Which of the following is a device designed to open an overloaded circuit and prevent overheating?

Physics
1 answer:
spin [16.1K]3 years ago
4 0
Circuit breaker is a device that is designed to open an overloaded circuit and prevent overheating. The correct option in regards to the given question is option "a". The main purpose of the circuit breaker is to disconnect the defective switch from the circuit as soon as any problem arises. This helps in preventing any kind of major accident. Overheating can result in a big accident and the circuit breaker is the device that senses the overheating and disconnects the switch before any major incident. It is an automated system that acts as a protective devise.
You might be interested in
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
At a point 1.2 m out from the hinge, 14.0 N force is exerted at an angle of 27 degrees to the moment arm in a plane which is per
geniusboy [140]

Answer:

\tau = 7.63 Nm

Explanation:

As we know that moment of force is given as

\tau = \vec r \times \vec F

now we have

\vec r = 1.2 m

\vec F = 14 N

now from above formula we have

\tau = r F sin\theta

here we know that

\theta = 27 degree

so we have

\tau = (1.2)(14) sin27

\tau = 7.63 Nm

3 0
3 years ago
1. An object with a mass of m is thrown straight up near the surface of the earth. While the object is going up, the net force o
Vaselesa [24]

Answer:

C: equal to mg

Explanation:

in free-fall, gravity is always the net force on an object

5 0
3 years ago
How does friction make it possible for you to walk across the floor?
Tema [17]

if we are walking on a perfectly smooth ground which has no friction our force would simply cancel out the force reverted by the ground and we would fall.

We need it to help push out feet off the ground

Hope those helps :)

5 0
3 years ago
The following items are connected in a circuit. in which one would you find a voltage gain?
timurjin [86]

Answer:

A

Explanation:

7 0
3 years ago
Other questions:
  • Part 1: What are the two groups of planets based on composition?
    9·1 answer
  • What type of force was applied to these rocks to form folds?
    8·1 answer
  • Ohms law in symbols is
    9·1 answer
  • Which of these changes would solidify a substance?
    7·1 answer
  • A car slows down at -5.00 m/s^2 until it comes to a stop after traveling 15.0 m. What was the initial speed of the car?
    10·1 answer
  • The activation energy of a reaction going on its own is 20 kj. If the reaction was treated with a catalyst, which would most lik
    12·2 answers
  • How do furnace heating systems typically work?
    14·1 answer
  • Please guys help me i will help u too ​
    14·2 answers
  • Which would help you perform a basketball skill well with<br> speed?
    14·1 answer
  • A 56-N net force acting on a cart accelerates it at a rate of 0.5 m/s/s. What is the mass of the cart
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!