1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ket [755]
4 years ago
8

An oscillator consists of a block attached to a spring (k = 500 N/m). At some time t, the position (measured from the system's e

quilibrium location), velocity, and acceleration of the block are x = 0.660 m, v = -12.3 m/s, and a = -128 m/s2. (a) Calculate the frequency of oscillation. Hz (b) Calculate the mass of the block. kg (c) Calculate the amplitude of the motion.
Physics
2 answers:
Alex_Xolod [135]4 years ago
8 0

Answer:

a) \omega = 10.407\,\frac{rad}{s}, b) m = 4.617\,kg, c) A = 1.355\,m

Explanation:

a) The system have a simple armonic motion, whose position function is:

x(t) = A\cdot \cos (\omega\cdot t + \phi)

The velocity function is determined by deriving the position function in terms of time:

v(t) = -\omega \cdot A \cdot \sin(\omega\cdot t + \phi)

The acceleration function is found by deriving again:

a(t) = -\omega^{2} \cdot A \cdot \cos (\omega\cdot t + \phi)

Let assume that t = 0\,s. The following nonlinear system is built:

A\cdot \cos \phi = 0.660\,m

-\omega \cdot A \cdot \sin \phi = -12.3\,\frac{m}{s}

-\omega^{2}\cdot A \cdot \sin \phi = -128\,\frac{m}{s^{2}}

System can be reduced by divinding the second and third expressions by the first expression:

\omega \cdot \tan \phi = 18.636\,\frac{1}{s}

\omega^{2}\cdot \tan \phi = 193.94\,\frac{1}{s^{2}}

Now, the last expression is divided by the first one:

\omega = 10.407\,\frac{rad}{s}

b) The mass of the block is:

m = \frac{k}{\omega^{2}}

m = \frac{500\,\frac{N}{m} }{(10.407\,\frac{rad}{s})^{2} }

m = 4.617\,kg

c) The phase angle is:

\phi = \tan^{-1} \left(\frac{18.636\,\frac{1}{s} }{\omega}  \right)

\phi \approx 0.338\pi

The amplitude is:

A = \frac{0.660\,m}{\cos 0.338\pi}

A = 1.355\,m

lidiya [134]4 years ago
4 0

Answer:

Explanation:

Given:

Spring constant, k = 500 N/m

Displacement, x = 0.660 m

Velocity, v = -12.3 m/s

Acceleration, a = -128 m/s2

For a body experiencing simple harmonic motion,

x = A cos (ωt + φ)

0.66 = A cos (ωt + φ) ....1

dx/dt = A cos (ω t + φ ) dt

dx/dt = v = -Aω × sin (ω t + φ)

-12.3 = -Aω × sin (ω t + φ) ......2

dv/dt = -Aω × sin (ω t + φ) dt

dv/dt = a = -Aω^2 × cos (ω t + φ)

-128 = -Aω^2 × cos (ω t + φ) .......3

Equating equation 1 and 3,

-128 = -ω^2 × 0.66

ω^2 = 128/0.66

= 193.94

ω = 13.93 rad/s

ω = 2pi × f

frequency, f = 13.93/2pi

= 2.22 Hz

B.

Using Hooke's law,

Force, F = -kx

Force = mass, m × acceleration, a

Mass = (500 × 0.66)/128

= 2.58 kg

C.

Amplitude, A

ω = 13.93 rad/s

Frome equation 2 and 3,

-12.3 = -Aω × sin (ω t + φ)

-12.3 = -A × 13.93 × sin (13.93 × 1/2.22 + φ)

0.883 = A × sin (6.275 + φ) .....4

-128 = -Aω^2 × cos (ω t + φ)

-128 = A (13.93)^2 cos (13.93 × 1/2.22 + φ)

0.66 = A cos (6.275 + φ) .....5

From equation 4 and 5,

0.883 = A × sin (6.275 + φ)

0.66 = A cos (6.275 + φ)

Squaring both and equating them,

0.78/A^2 = sin^2 (6.275 + φ)

0.436/A^2 = cos^2 (6.275 + φ)

Adding both,

0.78/A^2 + 0.436/A^2 = sin^2 (6.275 + φ) + cos^2 (6.275 + φ)

From sin^2 theta + cos^2 theta = 1

0.78/A^2 + 0.436/A^2 = 1

0.78 + 0.436 = A^2

A = sqrt(1.2156)

= 1.1025 m

You might be interested in
An insulated pipe carries steam at 300°C. The pipe is made of stainless steel (with k = 15 W/mK), has an inner diameter is 4 cm,
insens350 [35]

Answer:

The answers to the question are

(i) The rate of heat loss per-unit-length (W/m) from the pipe is 131.62 W

(ii) The temperature of the outer surface of the insulation is 49.89 °C

Explanation:

To solve the question, we note that the heat transferred is given by

Q = \frac{2\pi L(t_{hf} - t_{cf}) }{\frac{1}{h_{hf}r_1}+\frac{ln(r_2/r_1)}{k_A} + \frac{ln(r_3/r_2)}{k_B} +\frac{1}{h_{cf}r_3}}

Where

t_{hf} = Temperature at the inside of the pipe = 300 °C

t_{f} = Temperature at the outside of the pipe = 20 °C

r₁ =internal  radius of pipe = 4.0 cm

r₂ = Outer radius of pipe = 4.5 cm

r₃ = Outer radius of the insulation = r₂ + 2.5 = 7.0 cm

k_A = 15 W/m·K

k_B = 0.038 W/m·K

h_{hf} = 75 W/m²·K

h_{cf} = 10 W/m²·K

Plugging in the values in the above equation where for a unit length L = 1 m, we have

Q = 131.32 W

From which we have, for the film of air at the pipe outer boundary layer

Q = \frac{t_A-t_B}{R_T} Where R_T for the air film on the pipe outer surface is given by

R_T= \frac{1}{\alpha A}

where A =area of the outside of the pipe

= \frac{1}{10*2\pi*0.07*1 } = 0.227 K/W

Therefore

131.32 W = \frac{t_A-20}{0.227} which gives

t_A = 49.89 °C

Heat transferred by radiation = q' = ε×σ×(T₁⁴ - T₂⁴)

Where ε = 0.9, σ, = 5.67×10⁻⁸W/m²·(K⁴)

T₁ = Surface temperature of the pipe = 49.89 °C and

T₂ = Temperature of the surrounding = 20.00 °C

Plugging in the values gives, q' = 0.307 W per m²

Total heat lost per unit length = 131.32 + 0.307 =131.62 W

8 0
3 years ago
Will the velocity of the book change as it moves across the surface with NO friction? Explain your answer.
MakcuM [25]

No velocity will not be changed

Why?

According to Newtons 1st law the velocity of a moving object remains unchanged unless a external force affect that.

6 0
3 years ago
Read 2 more answers
Identical spheres are dropped from a height of 100 m above the surfaces of Planet X and Planet Y. The speed of the spheres as a
Anna007 [38]

Answer:B

Explanation:

8 0
3 years ago
Calculate the total energy of 4.0 kg object moving horizontally at 20 m/s 50 meters above the surface.
Serhud [2]

Answer:

Correct answer:  E total = 2,800 J

Explanation:

Given:

m = 4 kg   the mass of the object

V = 20 m/s  the speed (velocity) of the object

H = 50 m the height of the object above the surface

E total = ? J

The total energy of an object is equal to the sum of potential and kinetic energy

E total = Ep + Ek

Ep = m g H   we take g = 10 m/s²

Ep = 4 · 10 · 50 = 2,000 J

Ek = m V² / 2

Ek = 4 · 20² / 2 = 2 · 400 = 800 J

E total = 2,000 + 800 = 2,800 J

E total = 2,800 J

God is with you!!!

4 0
3 years ago
A body weighs 100newtons when submerged in water. calculate the upthrust action on the body​
Andrews [41]

Answer:

Upthrust = 20 N

Explanation:

The question says that "A body weighs 100N in air and 80N when submerged in water. Calculate the upthrust acting on the body ?"

Upthrust is defined as the force when a body is submerged in liquid, then liquid applies a force on it.

ATQ,

Weight of body in air is 100 N

Weight of body in water is 80 N

Upthrust is equal to the weight of body in air minus weight of body in water.

Upthrust = 100 N - 80 N

Upthrust = 20 N

So, 20 N of upthrust is acting on the body.

7 0
3 years ago
Other questions:
  • A bag of sugar weighs 1.50 lb on earth. what would it weigh in newtons on the moon, where the free-fall acceleration is one-sixt
    11·1 answer
  • if an object is thrown straight up with an initial velocity of 8m/s and takes 3 seconds to strike the ground, from what height w
    11·1 answer
  • The flywheel of a motor has a mass of 300.0 kg and a radius of 55 cm. If the motor can exert a torque of 2000.0 N . m on this fl
    15·1 answer
  • The state of matter that has particles that slide by one another
    10·1 answer
  • A soccer ball is released from rest at the top of a grassy incline. After 4.1 seconds, the ball travels 43 meters and 1.0 s afte
    6·1 answer
  • An object with an initial velocity of 10 m/s accelerates at a rate of 3.5 m/s2 for 8 seconds. How far will it have traveled duri
    9·1 answer
  • An ideal monatomic gas at temperature T is held in a container. If the gas is compressed isothermally, that is at constant tempe
    8·1 answer
  • Two car collide in an intersection. The speed limit in that zone is 30 mph. The car (mass of 1250 kg) was going 17.4 m/s (38.9).
    6·1 answer
  • Why do herbivores of the Serengeti migrate year after year
    5·2 answers
  • A block of cheese is pulled on by a string and slides to the right along a rough surface.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!