Answer:
Explanation:
Given:
Spring constant, k = 500 N/m
Displacement, x = 0.660 m
Velocity, v = -12.3 m/s
Acceleration, a = -128 m/s2
For a body experiencing simple harmonic motion,
x = A cos (ωt + φ)
0.66 = A cos (ωt + φ) ....1
dx/dt = A cos (ω t + φ ) dt
dx/dt = v = -Aω × sin (ω t + φ)
-12.3 = -Aω × sin (ω t + φ) ......2
dv/dt = -Aω × sin (ω t + φ) dt
dv/dt = a = -Aω^2 × cos (ω t + φ)
-128 = -Aω^2 × cos (ω t + φ) .......3
Equating equation 1 and 3,
-128 = -ω^2 × 0.66
ω^2 = 128/0.66
= 193.94
ω = 13.93 rad/s
ω = 2pi × f
frequency, f = 13.93/2pi
= 2.22 Hz
B.
Using Hooke's law,
Force, F = -kx
Force = mass, m × acceleration, a
Mass = (500 × 0.66)/128
= 2.58 kg
C.
Amplitude, A
ω = 13.93 rad/s
Frome equation 2 and 3,
-12.3 = -Aω × sin (ω t + φ)
-12.3 = -A × 13.93 × sin (13.93 × 1/2.22 + φ)
0.883 = A × sin (6.275 + φ) .....4
-128 = -Aω^2 × cos (ω t + φ)
-128 = A (13.93)^2 cos (13.93 × 1/2.22 + φ)
0.66 = A cos (6.275 + φ) .....5
From equation 4 and 5,
0.883 = A × sin (6.275 + φ)
0.66 = A cos (6.275 + φ)
Squaring both and equating them,
0.78/A^2 = sin^2 (6.275 + φ)
0.436/A^2 = cos^2 (6.275 + φ)
Adding both,
0.78/A^2 + 0.436/A^2 = sin^2 (6.275 + φ) + cos^2 (6.275 + φ)
From sin^2 theta + cos^2 theta = 1
0.78/A^2 + 0.436/A^2 = 1
0.78 + 0.436 = A^2
A = sqrt(1.2156)
= 1.1025 m