The experimental mole ratio of silver chloride to barium chloride is calculated as below
fin the mole of each compound
mole= mass/molar mass
moles of AgCl = 14.5g/142.5 g/mol = 0.102 moles of AgCl
moles of BaCl2 = 10.2 g/208 g/mol = 0.049 moles of BaCl2
find the mole ratio by dividing each mole with the smallest mole(0.049)
AgCl= 0.102/0.049 =2
BaCl2 = 0.049/0.049 =1
therefore the mole ratio AgCl to BaCl2 is 2 :1
the calculated value is Ea is 18.2 KJ and A is 12.27.
According to the exponential part in the Arrhenius equation, a reaction's rate constant rises exponentially as the activation energy falls. The rate also grows exponentially because the rate of a reaction is precisely proportional to its rate constant.
At 500K, K=0.02s−1
At 700K, k=0.07s −1
The Arrhenius equation can be used to calculate Ea and A.
RT=k=Ae Ea
lnk=lnA+(RT−Ea)
At 500 K,
ln0.02=lnA+500R−Ea
500R Ea (1) At 700K lnA=ln (0.02) + 500R
lnA = ln (0.07) + 700REa (2)
Adding (1) to (2)
700REa100R1[5Ea-7Ea] = 0.02) +500REa=0.07) +700REa.
=ln [0.02/0 .07]
Ea= 2/35×100×8.314×1.2528
Ea =18227.6J
Ea =18.2KJ
Changing the value of E an in (1),
lnA=0.02) + 500×8.314/18227.6
= (−3.9120) +4.3848
lnA=0.4728
logA=1.0889
A=antilog (1.0889)
A=12.27
Consequently, Ea is 18.2 KJ and A is 12.27.
Learn more about Arrhenius equation here-
brainly.com/question/12907018
#SPJ4
Nitrogen is often used for the storage of semen samples for artificial insemination of cattle. Nitrogen is used to maintain a dry inert atmosphere over chemicals during storage, reaction or processing. Used in brewing, soft drinks and wine-making industries to exclude air from the product and de-aerate water.