answer
changing the temperature and increase in the pressure
Change in concentration, pressure, catalyst, inert gas addition, etc. have no effect on concentration, pressure, catalyst, inert gas addition lead to a shift in equilibrium position .
Answer:
219.95 °C
Explanation:
Given data:
Volume of gas = 9.71 L
Initial pressure = 209 torr (209/760 = 0.275 atm)
Initial temperature = 10.1 °C (10.1 +273 = 283.1 K)
Final temperature = ?
Final pressure = 364 torr (364/760 =0.479 atm)
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
0.275 atm / 283.1 K = 0.479 atm/T₂
T₂ = 0.479 atm × 283.1 K/ 0.275 atm
T₂ = 135.6 atm. K /0.275 atm
T₂ = 493.1 K
Kelvin to °C:
493.1 K - 273.15 = 219.95 °C
The hydrophobic effect is caused by nonpolar molecules clumping together. Large macromolecules can have hydrophobic sections, which will fold the molecule so they can be close to each other, away from water. Many amino acids in proteins are hydrophobic, helping the proteins obtain their complicated shapes. The hydrophobic effect extends to organisms, as many hydrophobic molecules on the surface of an organisms help them regulate the amount of water and nutrients in their systems.
Answer:
See the answer below
Explanation:
Even though plants are rooted in the ground, they still move, exert <u>force,</u> and do<u> work</u>.
Plant cells have very strong cell walls that allow <u>pressure</u> to build up inside of the cell as water is absorbed. This pressure is called <u>turgor</u>.
When turgor pressure is high enough in a cell, the cell walls become <u>firm</u> and as a result, the cell becomes rigid and the plant is able to stand <u>tall</u> and<u> straight</u>.
When a plant does not get enough water, the turgor pressure inside of the cells <u>decreases.</u> A decrease in <u>pressure</u> pushing against the cell wall causes the cells to lose their <u>shape</u> and <u>shrink</u>. This causes the plant to begin to droop or <u>wilt</u>.
When the wilted plant gets enough water, the cells will become rigid again, and the plant will stand firm and straight once again.
The answer is C
6.0m x 8.0m= 48.0m
then converting it to cm by multiply
48 x 100