Answer:
t = 30.1 sec
Explanation:
If the ant is moving at a constant speed, the velocity vector will have the same magnitude at any point, and can be decomposed in two vectors, along directions perpendicular each other.
If we choose these directions coincident with the long edge of the paper, and the other perpendicular to it, the components of the velocity vector, along these axes, can be calculated as the projections of this vector along these axes.
We are only interested in the component of the velocity across the paper, that can be calculated as follows:
vₓ = v* sin θ, where v is the magnitude of the velocity, and θ the angle that forms v with the long edge.
We know that v= 1.3 cm/s, and θ = 61º, so we can find vₓ as follows:
vₓ = 1.3 cm/s * sin 61º = 1.3 cm/s * 0.875 = 1.14 cm/s
Applying the definition of average velocity, we can solve for t:
t =
= 
⇒ t = 30.1 sec
Answer:
Java program explained below
Explanation:
FindSpecialNumber.java
import java.util.Scanner;
public class FindSpecialNumber {
public static void main(String[] args) {
//Declaring variable
int number;
/*
* Creating an Scanner class object which is used to get the inputs
* entered by the user
*/
Scanner sc = new Scanner(System.in);
//getting the input entered by the user
System.out.print("Enter a number :");
number = sc.nextInt();
/* Based on user entered number
* check whether it is special number or not
*/
if (number == -99 || number == 0 || number == 44) {
System.out.println("Special Number");
} else {
System.out.println("Not Special Number");
}
}
}
_______________
Output#1:
Enter a number :-99
Special Number
Output#2:
Enter a number :49
Not Special Number
Answer:
The difference between the dual split Master cylinder and diagonal split Master cylinder is dual split it makes power brakes less prone to failure while diagonal split is when the left rear and right front brakes are on one hydraulic line while the right front and left rear brakes are on another.
Given Information:
Output power required = Pout = 2.80 MW
Efficiency = η = 30%
Intensity = I = 1180 W/m²
Required Information:
Effective area = A = ?
Answer:
Effective area = A = 7.907x10³ m²
Step-by-step explanation:
A community plans to build a facility to convert solar power into electrical power and this facility has an efficiency of 30%
As we know efficiency is given by
η = Pout/Pin
Where Pout is the output power and Pin is the input power.
Pin = Pout/η
Pin = 2.80x10⁶/0.30
Pin = 9.33x10⁶ W
The effective area of a perfectly absorbing surface used in such an installation can be found using
A = Pin/I
Where I is the in Intensity of the sunlight in W/m²
A = 9.33x10⁶/1180
A = 7.907x10³ m²
Therefore, the effective area of the absorbing surface would be 7.907x10³ m².