Answer = B = Neutrons and Mass Number
Isotopes are defined as those atoms which have same atomic number but different atomic masses.
Atomic mass is basically the number of protons and neutrons present in an atom.
Atomic number is the number of protons present in an atom.
So, in isotopes the number of protons are same but the number of neutrons vary due to which atomic masses also vary.
In given three isotopes, all have same number of protons but different number of neutrons.
i.e.
H-1 = 1 P + 0 N = 1 u (Proton)
H-2 = 1 P + 1 N = 2 u (Deuterium)
H-3 = 1 P + 2 N = 3 u (Tritium)
Hence, it is clear that the number after H shows a change in number of neutrons and mass number.
Answer:
a) Mo the electron configuration: 42Mo: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d4
Mo3+ - is Paramagnetic
b) Au - [Xe] 4f14 5d10 6s1
For Au+ is not paramagnetic
c) Mn - [Ar] 3d5 4s2
Mn2+ is paramagnetic
d)Hf -[Xe] 4f¹⁴ 5d² 6s²
Hf2+ is not paramagnetic
Explanation:
An atom becomes positively charged when it looses an electron.
Diamagnetism in atom occurs whenever two electrons in an orbital paired equalises with a total spin of 0.
Paramagnetism in atom occurs whenever at least one orbital of an atom has a net spin of electron. That is a paramagnetic electron is just an unpaired electron in the atom.
Here is a twist even if an atom have ten diamagnetic electrons, the presence of at least one paramagnetic electron, makes it to be considered as a paramagnetic atom.
Simply put paramagnetic elements are one that have unpaired electrons, whereas diamagnetic elements do have paired electron.
Answer: 35 g/cm
Explanation:
Density equals mass over volume. 525 divided by 15 is 35
I’d say for the answer 13.13 mmHg?