Yes, The tectonic plates are always moving and interacting today. The continents are still moving today. Because sometimes of the most dynamic sites of tectonic activity are seafloor spreading zones and giant rift valleys.
Answer:
36.92 mg of oxygen required for bio-degradation.
Explanation:

Mass of benzene = 30 mg = 0.03 g (1000 mg = 1 g )
Moles benzene =
According to reaction 5 moles of benzene reacts with 15 moles of oxygen gas.
Then 0.0003846 mol of benzene will react with:
of oxygen gas
Mass of 0.0011538 moles of oxygen gas:
0.0011538 mol × 32 g/mol = 0.03692 g = 36.92 mg
36.92 mg of oxygen required for bio-degradation.
0.003 moles of NaOH was used in the titration.
<h3>What is titration?</h3>
The concentration of an identified analyte can be found using a simple laboratory technique called titration. As a standard solution with a given concentration and volume, a reagent known as the titrant or titrator is created.
By using a solution with a known concentration to measure the concentration of an unknown solution, this process is known as titration. To a known volume of the analyte (the unknown solution), the titrant (the known solution) is typically added from a buret until the reaction is finished. To ascertain the unknown concentration of an identifiable analyte, titration, commonly referred to as titrimetry, is a widely used quantitative laboratory analytical technique (Medwick and Kirschner, 2010). Volume measurements are a crucial component of titration
Concentration in mol/dm3 =
Amount of solution mol
= concentration in mol/dm3 × volume in dm3
Amount of sodium hydroxide
= 0.100 × 0.0250
= 0.00250 mol
To know more about titration, visit:
brainly.com/question/27394328
#SPJ9
The answer is that exact locations within either cannot be determined at any given moment in time.
An electron cloud be compared with a spinning airplane propeller in the manner that in both exact location within either cannot be determined at any given moment in time.
In both electron cloud as well as spinning airplane propeller, there is a probability of finding either but exact location can not be determined.
2 C₁₇H₁₉NO₃ + H₂SO₄ → Product
Moles of H₂SO₄ = M x V(liters) = 0.0116 x 8.91/1000 = 1.033 x 10⁻⁴ mole
moles of morphine = 2 x moles of H₂SO₄ = 2.066 x 10⁻⁴
Mass of morphine = moles x molar mass of morphine = 2.066 x 10⁻⁴ x 285.34
= 0.059 g
percent morphine =

=

= 8.6 %