Answer:
ΔE = 73 J
Explanation:
By the first law of thermodynamics, the energy in the system must conserved:
ΔE = Q - W
Where ΔE is the internal energy, Q is the heat flow (positive if it's absorbed by the system, and negative if the system loses heat), and W is the work (positive if the system is expanding, and negative if the system is compressing).
So, Q = + 551 J, and W = + 478 J
ΔE = 551 - 478
ΔE = 73 J
Answer:
Number of molecules = 1.8267×10^20
Explanation:
From the question, we can deuced that the gases behave ideally, the we can make use of the ideal gas equation, which is expressed below;
PV = nRT
where
P =pressure
V =volume
n = the number of moles
R is the gas constant equal to 0.0821 L·atm/mol·K
T is the absolute temperature
Given:
P = 6.75 atm;
T = 290.0 k,
; V = 1.07 cm³ = 0.001 L
( 6.75 atm)(0.00107 L) = n(0.0821 L·atm/mol·K)(290K)
n = 3.0335167*10^-4 moles
But there are 6.022×10²³ molecules in 1 mole,
Number of molecules = 1.8267×10^20
Physics: Physics is more focused to finding the universal laws of general processes
Chemistry: Chemistry focuses more on details and specific phenomena, such as what is the boiling point of this substance and why.
is an outer shell electron that is associated with an atom