From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of fluorine = 18.99 grams
molecular mass of chlorine = 35.5 grams
Therefore:
one mole of CF2Cl2 = 12 + 2(18.99) + 2(35.5) = 120.98 grams
Therefore, we can use cross multiplication to find the number of moles in 79.34 grams as follows:
mass = (79.34 x 1) / 120.98 = 0.6558 moles
Now, one mole contains 6.022 x 10^23 molecules, therefore:
number of molecules in 0.65548 moles = 0.6558 x 6.022 x 10^23
= 3.949 x 10^23 molecules
The correct answer is <span>Antoine-Laurent de Lavoisier. Hope this helps!</span>
Answer:
<h3>The answer is 7.42 </h3>
Explanation:
The pH of a solution can be found by using the formula
![pH = - log [ { H_3O}^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D)
From the question we have

We have the final answer as
<h3>7.42 </h3>
Hope this helps you
Answer:
Triplet oxygen
Explanation:
Based on my research it is called Triplet Oxygen, if this is wrong I'm sorry
The molar mass of B(NO₃)₃ - Boron nitrate : 196.822 g/mol
<h3>Further explanation</h3>
In stochiometry therein includes
<em>Relative atomic mass (Ar) and relative molecular mass / molar mass (M) </em>
So the molar mass of a compound is given by the sum of the relative atomic mass of Ar
M AxBy = (x.Ar A + y. Ar B)
The molar mass of B(NO₃)₃ - Boron nitrate :
M B(NO₃)₃ = Ar B + 3. Ar N + 9.Ar O
M B(NO₃)₃ = 10.811 + 3. 14,0067 + 9. 15,999
M B(NO₃)₃ = 196.822 g/mol