Calling x and y the two sizes of the rectangular field, the problem consists in finding the minimum values of x and y that give an area of

.
The area is the product between the two sizes:

(1)
While the perimeter is twice the sum of the two sizes:

(2)
From (1) we can write

and we can substitute it into (2):

To find the minimum value of the perimeter, we have to calculate its derivative and put it equal to zero:

The derivative of the perimeter is

If we require p'(x)=0, we find


And the other side is

This means that the dimensions that require the minimum amoutn of fencing are (424.26 m, 424.26 m), so it corresponds to a square field.
Answer:
<h3>#1</h3>
- tangent = opposite leg / adjacent leg
- tan ∠F = DE/ EF
- tan ∠F = 24/7
<u>Option D</u>
<h3>#2</h3>
Sine and cosine are same for complementary angles.
- Complementary of 67° is 90° - 67° = 23°.
- sine 67° = cosine 23°
The height of the cylinder will be 5 units based on the information given.
<h3>How to calculate the height?</h3>
The cylinder has a volume of 45π cubic meters and the radius is 3 units.
The height will be calculated thus:
Volume of a cylinder = πr²h
45π = πr²h
45π = π(3²)h
45π = 9πh
h = 45π/9π
h = 5
Therefore, the height of the cylinder will be 5. units.
Learn more about volume on:
brainly.com/question/12410983
#SPJ1
Answer:
x=-34.6
Step-by-step explanation:
(x)tan12= 22/x(x)
tan12\xtan12=22/tan12
x= -34.6
Answer:
the 2nd
Step-by-step explanation:
![\sqrt[5]{4} \times \sqrt{2 } \\ {4}^{ \frac{1}{5} } \times {2}^{ \frac{1}{2} } \\ {2}^{2 \times \frac{1}{5} } \times {2}^{ \frac{1}{2} } \\ {2}^{ \frac{2}{5} + \frac{1}{2} } \\ {2}^{ \frac{9}{10} } = \sqrt[10]{ {2}^{9} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7B4%7D%20%20%20%5Ctimes%20%20%5Csqrt%7B2%20%7D%20%20%5C%5C%20%20%7B4%7D%5E%7B%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%20%5Ctimes%20%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20%5C%5C%20%20%7B2%7D%5E%7B2%20%5Ctimes%20%5Cfrac%7B1%7D%7B5%7D%20%20%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20%5C%5C%20%20%7B2%7D%5E%7B%20%5Cfrac%7B2%7D%7B5%7D%20%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20%5C%5C%20%20%20%7B2%7D%5E%7B%20%5Cfrac%7B9%7D%7B10%7D%20%7D%20%20%3D%20%20%5Csqrt%5B10%5D%7B%20%7B2%7D%5E%7B9%7D%20%7D%20)