Answer:
c. an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.
Explanation:
Conduction refers to the transfer of thermal energy or electric charge as a result of the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.
Any material or object that allow the conduction (transfer) of electric charge or thermal energy is generally referred to as a conductor. Conductors include metal, steel, aluminum, copper, frying pan, pot, spoon etc.
Hence, the difference between an initial condition and a boundary condition for conduction in a solid is that an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.
Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at 125%.
Section 210.19(A)(1) permits the bigger of the two values listed below to be utilized as the connectors 's ultimate size for sizing an ungrounded branch circuit conductor:
Without any extra adjustments or corrections, either 125% of the continuous load, OR
When adjustment and corrective factors are applied, the load is 100% (not 125% as stated previously).
This will be the same in the 2020 NEC. The introduction of new exception 2 is what has changed. To comprehend this new exception, one must study it very carefully. A part of a branch circuit connected to pressure connectors (such as power distribution blocks) that complies with 110.14(C)(2) may now be sized using the continuous load plus the noncontiguous load instead of 125% of the continuous load thanks to the new exception.
To know more about connectors click here:
brainly.com/question/16987039
#SPJ4
Answer:
6.6 kilo volts = 6.6 k volts
Explanation:
A prefix is a word, number or a letter that is added before another word. In physics we have different prefixes for the exponential powers of 10, that are placed before units in place of those powers. Some examples are:
deci (d) ------ 10⁻¹
centi (c) ------ 10⁻²
milli (m) ------ 10⁻³
kilo (k) ------ 10³
mega (M) ----- 10⁶
giga (G) ------ 10⁹
We have:
6600 volts
converting to exponential form:
=> 6.6 x 10³ volts
Thus, we know that the prefix of kilo (k) is used for 10³.
Hence,
=> <u>6.6 kilo volts = 6.6 k volts</u>
The question is asking whether that statement is true or false. Options are;
A) True
B) False
This is about usage of Swing arm restraints.
<em><u>B) False</u></em>
There are different safety features that people employ when a vehicle is lifted. However, for this question, we will only talk about swing arm restraints.
- Swing arm restraints are lifting restraint devices that are used to prevent a cars arms from shifting or going out of position after that car has been lifted and mounted.
- This swing arm restraint does not prevent a vehicle from falling off a lift as it just helps to ensure that the swing arms that are unloaded basically maintain their position.
Read more at; brainly.com/question/17972874
Answer:
Yes
Explanation:
If the Ajax representative fails to correct the previous statement this can cause misrepresentation.