The conditions of temperature and pressure in which a gas least soluble in water is low pressure and high temperature.
<h3>What is Henry Law?</h3>
The amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid, according to Henry's law.
From this law it is clear that:
- As the pressure of the gas increases solubility of the gas on the liquid also increases.
But if the temperature of the liquid decreases then the solubility of the gas also increases.
Hence at low pressure and high temperature, gas is least soluble.
To know more about solubility of gas, visit the below link:
brainly.com/question/14747303
#SPJ4
I have no yuuuuu to say anything abt to
Answer : The mass of sodium bromide added should be, 18.3 grams.
Explanation :
Molality : It is defined as the number of moles of solute present in kilograms of solvent.
Formula used :

Solute is, NaBr and solvent is, water.
Given:
Molality of NaBr = 0.565 mol/kg
Molar mass of NaBr = 103 g/mole
Mass of water = 315 g
Now put all the given values in the above formula, we get:


Thus, the mass of sodium bromide added should be, 18.3 grams.
Answer:
Look at the properties of Oxygen and Silicon - the two most abundant elements in the Earth's crust - by clicking on their symbols on the Periodic Table.
Explanation:
Answer:
[Cr(NH3)6.]C13
Explanation:
Alfred Werner's coordination theory (1893) recognized two kinds of valency;
Primary valency which are nondirectional and secondary valency which are directional.
Hence, the number of counter ions precipitated from a complex depends on the primary valency of the central metal ion in the complex.
We must note that it is only these counter ions that occur outside the coordination sphere that can be precipitated by AgNO3.
If we consider the options carefully, only [Cr(NH3)6.]C13 possess counter ions outside the coordination sphere which can be precipitated when treated with aqueous AgNO3.