Answer:
13.6 cm
Explanation:
From Snell's law:
n₁ sin θ₁ = n₂ sin θ₂
In the air, n₁ = 1, and light from the horizon forms a 90° angle with the vertical, so sin θ₁ = sin 90° = 1.
Given n₂ = 4/3:
1 = 4/3 sin θ
sin θ = 3/4
If x is the radius of the circle, then sin θ is:
sin θ = x / √(x² + 12²)
sin θ = x / √(x² + 144)
Substituting:
3/4 = x / √(x² + 144)
9/16 = x² / (x² + 144)
9/16 x² + 81 = x²
81 = 7/16 x²
x ≈ 13.6
Answer:
angular range is ( 0.681 rad , 0.35 rad )
Explanation:
given data
wavelength λ = 380 nm = 380 ×
m
wavelength λ = 700 nm = 700 ×
m
to find out
angular range of the first-order
solution
we will apply here slit experiment equation that is
d sinθ = m λ ...........1
here m is 1 for single slit and d is = 
so put here value in equation 1 for 380 nm
we get
d sinθ = m λ
sinθ = 1 × 380 × 
θ = 0.35 rad
and for 700 nm
we get
d sinθ = m λ
sinθ = 1 × 700 × 
θ = 0.681 rad
so angular range is ( 0.681 rad , 0.35 rad )
Answer:x=23.4 cm
Explanation:
Given
mass of block 
inclination 
coefficient of static friction 
coefficient of kinetic friction 
distance traveled 
spring constant 
work done by gravity+work done by friction=Energy stored in Spring






3.85 pounds is the answer
Answer:

Explanation:
Hello.
In this case, since the force is defined in terms of the mass and acceleration by:

We can easily compute the mass by solving for it:

Whereas the force is 182 N (kg*m/s²) and the acceleration is 13 m/s², therefore, we obtain:

Best regards.