<span>The chemical formula is pretty straightforward. 2KOH reacts to produce H2O and K2O. This is the balanced chemical reaction between: Solid potassium hydroxide koh decomposing into gaseous water and solid potassium.</span>
Answer:
53.1 mL
Explanation:
Let's assume an ideal gas, and at the Standard Temperature and Pressure are equal to 273 K and 101.325 kPa.
For the ideal gas law:
P1*V1/T1 = P2*V2/T2
Where P is the pressure, V is the volume, T is temperature, 1 is the initial state and 2 the final state.
At the eudiometer, there is a mixture between the gas and the water vapor, thus, the total pressure is the sum of the partial pressure of the components. The pressure of the gas is:
P1 = 92.5 - 2.8 = 89.7 kPa
T1 = 23°C + 273 = 296 K
89.7*65/296 = 101.325*V2/273
101.325V2 = 5377.45
V2 = 53.1 mL
The oxidation number of elements in equation below are,
4NH₃ + 3Ca(ClO)₂ → 2N₂ + 6H₂O + 3CaCl₂
O.N of N in NH₃ = -3
O.N of Ca in Ca(ClO)₂ and CaCl₂ = +2
O.N of N in N₂ = 0
O.N of Cl in Ca(ClO)₂ = +1
O.N of Cl in CaCl₂ = -1
Oxidation:
Oxidation number of Nitrogen is increasing from -3 (NH₃) to 0 (N₂).
Reduction:
Oxidation number of Cl is decreasing from +1 [Ca(ClO)₂] to -1 (CaCl₂).
Result:
<span>N is oxidized and Cl is reduced.</span>
An element’s atomic number is equal to the number of protons in that element’s nucleus. The mass number is the total number of an atom’s protons and neutrons. Protons have a positive charge; electrons have a negative charge; and neutrons are electrically neutral.
Putting it all together, given that the atomic number of lead is 82, the number of protons a lead atom contains is 82. The number of neutrons would be the difference between 207 and 82, or 125 neutrons. Finally, since you have a neutral atom, there must be an equal number of electrons as the number of protons—that is, 82 electrons.
Thus, you’ve got 82 protons, 125 neutrons, and 82 electrons.
Sodium Chloride is a compound.