Answer:
D.) 1m/s
Explanation:
Assume the initial angle of the swing is 12.8 degree with respect to the vertical. We can calculate the vertical distance from this initial point to the lowest point by first calculate the vertical distance from this point the the pivot point:

where L is the pendulum length
The vertical distance from the lowest point to the pivot point
is the pendulum length 2m
this means the vertical distance from this initial point to the lowest point is simply:

As the pendulum travel (vertically) from the initial point to the bottom point, its potential energy is converted to kinetic energy:


where m is the mass of the pendulum, g = 10 m/s2 is the constant gravitational acceleration, h = 0.05 is the vertical it travels, v is the pendulum velocity at the bottom, which we are trying to solve for.
The m on both sides of the equation cancel out


so D is the correct answer
Answer:
Option A
D = m/v
Explanation:
Density is defined as mass per unit volume of an object. Therefore, D=m/v where m is the mass of the object and v is the volume
Therefore, option A is the right option
Longitudinal waves have energy that vibrates parallel to the medium - a compression is the region of greatest density and the rarefaction the region of highest density .The rarefaction (much like the maximum amplitude in a transverse wave) has a region of lowest density, typically situated in the exact center of the region.
Answer: The area of the parking lot is 14,400 meters squared.
Explanation:
We have the dimensions of the parking lot.
60m by 240m
The units used here are meters.
Now, if we want to know the area of the parking lot is equal to the product between the length and the width:
A = 60m*240m = 14,400 m^2
The area of the parking lot is 14,400 meters squared.