Answer:
The specific heat of water is 4.18 J/g C.
Explanation:
q
=
m
C
s
Δ
T
Never forget that!
2200
=
m
⋅
4.18
J
g
⋅
°
C
⋅
66
°
C
∴
m
≈
8.0
g
Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:

You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
![Q=\frac{[PCl_{3} ] *[Cl_{2} ] }{[PCl_{5} ]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_%7B3%7D%20%5D%20%2A%5BCl_%7B2%7D%20%5D%20%7D%7B%5BPCl_%7B5%7D%20%5D%7D)
The concentrations are:
- [PCl₃]=

- [Cl₂]=

- [PCl₅]=

Replacing:

Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>
Answer:
tropical rain forests and savannas
Explanation:
Tropical rainforests are found near the equator due to the amount of rainfall and the amount of sunshine these areas receive. ...
savannas-Because of their warm climate requirements, savannas tend to be found closer to the equator, which marks the halfway point between the north and south hemispheres of the earth. Because this area gets direct sunlight more of the year than the north and south extremes, the temperature doesn't change much.
The amount of heat lost by granite is equal to the amount
of heat gained by water. Therefore their change in enthalpies must be equal.
The opposite in sign means that one is gaining while the other is losing
ΔH granite = - ΔH water
ΔH is the change in enthalpy experienced by a closed object
as it undergoes change in energy. This is expressed mathematically as,
ΔH = m Cp (T2 – T1)
Given this information, we can say that:
12.5 g * 0.790 J / g ˚C * (T2 – 82 ˚C) =
- 25.0 g * 4.18 J / g ˚C
* (T2 – 22 ˚C)
9.875 (T2 – 82) = 104.5 (22 – T2)
9.875 T2 – 809.75 = 2299 – 104.5 T2
114.375 T2 = 3108.75
T2 = 27.18 ˚C
The temperature of 2 objects after reaching thermal
equilibrium is 27.18 ˚<span>C.</span>