<span>There is no special name for that. Physics is usually just concerned with "forces", and doesn't specify whether the force pushes or pulls. If you want to be more specific, you can just call it a "pulling force".
I hoped this was satisfying!:)</span>
The ball will decelerate as it moves upwards.
The magnitude of the ball's acceleration is 0.3 m/s² and it directed backwards.
The given parameters;
- initial velocity of the ball, u = 1.25 m/s
- time of motion of the ball, t = 4.22 s
As the ball rolls up the inclined plane, the velocity decreases and eventually becomes zero when the ball reaches the highest point of the plane.
Thus, the ball decelerate as it moves upwards.
The acceleration of the ball is calculate as;

<em>at the highest point on the incline plane, the final velocity </em>
<em> is zero</em>

Thus, the magnitude of the ball's acceleration is 0.3 m/s² and it directed backwards.
Learn more here:brainly.com/question/23860763
Answer:
The beam used is a negatively charged electron beam with a velocity of
v = E / B
Explanation:
After reading this long statement we can extract the data to work on the problem.
* They indicate that when the beam passes through the plates it deviates towards the positive plate, so the beam must be negative electrons.
* Now indicates that the electric field and the magnetic field are contracted and that the beam passes without deviating, so the electric and magnetic forces must be balanced

q E = qv B
v = E / B
this configuration is called speed selector
They ask us what type of beam was used.
The beam used is a negatively charged electron beam with a velocity of v = E / B
<span>The number in front is the number of molecules (or atoms) taking part in the (balanced) chemical reaction equation.</span>
Answer: The surface temperature of Sirius B is 25,200 Kelvins(K).
Explanation: You would think Sirius would have a surface temperature of 9,940 Fahrenheit. That is somewhat correct, but Sirius is a binary star consisting of a main-sequence star of spectral type A0 or A1, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. Sirius, Sirius A, and Sirius B, are all different stars. Sirius A has a temperature of 9,940 Kelvins, but Sirius B has a temperature of 25,200 Kelvins(K).