Answer:
The magnitude of the electrostatic force is 120.85 N
Explanation:
We can use Coulomb's law to find the electrostatic force between the down quarks.
In scalar form, Coulomb's law states that for charges
and
separated by a distance d, the magnitude of the electrostatic force F between them is:

where
is Coulomb's constant.
Taking the values:


and knowing the value of the Coulomb's constant:

Taking all this in consideration:


Answer:
The frequency of the oscillation is 2.45 Hz.
Explanation:
Given;
mass of the spring, m = 0.5 kg
total mechanical energy of the spring, E = 12 J
Determine the spring constant, k as follows;
E = ¹/₂kA²
kA² = 2E
k = (2E) / (A²)
k = (2 x 12) / (0.45²)
k = 118.519 N/m
Determine the angular frequency, ω;

Determine the frequency of the oscillation;
ω = 2πf
f = (ω) / (2π)
f = (15.396) / (2π)
f = 2.45 Hz
Therefore, the frequency of the oscillation is 2.45 Hz.
<span>The majority of the asteroids in our solar system are found
in the space between the orbits of Mars and Jupiter. (B)</span>
Answer:
The index of refraction of the liquid is 1.35.
Explanation:
It is given that,
Critical angle for a certain air-liquid surface, 
Let n₁ is the refractive index of liquid and n₂ is the refractive index of air, n₂ =1
Using Snell's law for air liquid interface as :




So, the index of refraction of the liquid is 1.35. Hence, this is the required solution.