An ideal voltage source provides no energy when it is loaded by an open circuit (i.e. an infinite impedance), but approaches infinite energy and current when the load resistance approaches zero (a short circuit). ... An ideal current source has an infinite output impedance in parallel with the source.
Answer:
1 pulse rotate = 9 degree
Explanation:
given data
incremental encoder rotating = 15 rpm
wheel holes = 40
solution
we get here first 1 revolution time
as 15 revolution take = 60 second
so 1 revolution take =
1 revolution take = 4 seconds
and
40 pulse are there for 1 revolution
40 pulse for 360 degree
so 1 pulse rotate is = 
1 pulse rotate = 9 degree
Answer:
a mass of water required is mw= 1273.26 gr = 1.27376 Kg
Explanation:
Assuming that the steam also gives out latent heat, the heat provided should be same for cooling the hot water than cooling the steam and condense it completely:
Q = mw * cw * ΔTw = ms * cs * ΔTw + ms * L
where m = mass , c= specific heat , ΔT=temperature change, L = latent heat of condensation
therefore
mw = ( ms * cs * ΔTw + ms * L )/ (cw * ΔTw )
replacing values
mw = [182g * 2.078 J/g°C*(118°C-100°C) + 118 g * 2260 J/g ] /[4.187 J/g°C * (90.7°C-39.4°C)] = 1273.26 gr = 1.27376 Kg
Answer:
The MATLAB Code for this PI Controller will be:
Kp = 350;
Ki = 300;
Kd = 50;
C = pid(Kp,Ki,Kd)
T = feedback(C*P,1);
t = 0:0.01:2;
step(T,t)
Explanation:
When you are designing a PID controller for a given system, follow the steps shown below to obtain a desired response.
Obtain an open-loop response and determine what needs to be improved
Add a proportional control to improve the rise time
Add a derivative control to reduce the overshoot
Add an integral control to reduce the steady-state error
Adjust each of the gains $K_p$, $K_i$, and $K_d$ until you obtain a desired overall response.
The further explanation is attached in the Word File.
Generally, frictional losses are more predominant for the machines being not 100% efficient. This friction leads to the loss of energy in the form of heat, into the surroundings. Some of the supplied energy may be utilised to change the entropy (measure of randomness of the particles) of the system.