2.77mg caffeine / 1oz12oz / 1canLethal dose: 10.0g caffeine = 10,000mg caffeine First, find how much caffeine is in one can of soda, then divide that amount by the lethal dose to find the number of cans. (2.77mg caffeine / 1oz) * (12oz / 1can) = 33.24mg caffeine / 1can. (10,000mg caffeine) * (1can / 33.24mg caffeine) = 300.84 cans. Since we can't buy parts of a can of soda, then we have to round up to 301 cans. Notice how all the values were set up as ratios and how the units cancelled.
Answer:
Molar mass→ 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Explanation:
Let's apply the formula for freezing point depression:
ΔT = Kf . m
ΔT = 74.2°C - 73.4°C → 0.8°C
Difference between the freezing T° of pure solvent and freezing T° of solution
Kf = Cryoscopic constant → 5.5°C/m
So, if we replace in the formula
ΔT = Kf . m → ΔT / Kf = m
0.8°C / 5.5 m/°C = m → 0.0516 mol/kg
These are the moles in 1 kg of solvent so let's find out the moles in our mass of solvent which is 0.125 kg
0.0516 mol/kg . 0.125 kg = 6.45×10⁻³ moles. Now we can determine the molar mass:
Molar mass (mol/kg) → 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Answer: 159 grams
Explanation:
Copper (ii) oxide has the chemical formula CuO.
Now given that:
Mass of CuO in grams = ? (let unknown value be Z)
Number of moles = 2.00 moles
Molar mass of CuO = ?
For the molar mass of CuO: Atomic mass of Copper = 63.5g ; Oxygen = 16g
= 63.5g + 16g
= 79.5 g/mol
Apply the formula:
Number of molecules = (mass in grams/molar mass)
2.00 moles = (Z / 79.5 g/mol)
Z = 79.5 g/mol x 2.00 moles
Z = 159g
Thus, there are 159 grams in 2.00 moles of copper (ii) oxide