Answer:
For any given isotope, the sum of the numbers of protons and neutrons in the nucleus is called the mass number. This is because each proton and each neutron weigh one atomic mass unit. By adding together the number of protons and neutrons and multiplying by 1, you can calculate the mass of the atom.
Answer:
Only one—(i), or (ii), or (iii)—increases the reaction rate.
Explanation:
<em>Which of the following changes always leads to an increase in the rate constant for a reaction?</em>
- <em>Decreasing the temperature. </em>NO. A lower temperature leads to a slower reaction because the molecules have less energy to react.
- <em>Decreasing the activation energy</em>. YES. According to the Arrhenius equation, the lower the activation energy, the higher the rate constant.
- <em>Making the value of ΔE more negative</em>. NO. A more negative ΔE means a reaction is more spontaneous but not faster.
Answer: 10.9 mol.
Explanation:
- To understand how to solve this problem, we must mention the reaction equation where water produced from PbO₂.
Pb + PbO₂ + 2H₂SO₄ → 2PbSO₄ + 2H₂O
- Now, it is a stichiometric oriented problem, that 1 mole of PbO₂ produces 2 moles of H₂O.
Using cross multiplication:
1.0 mole of PbO₂ → 2.0 moles of H₂O
5.43 moles of PbO₂ → ??? moles of water
The moles of water produced = (5.43 x 2.0) = 10.86 moles ≅ 10.9 moles.
Answer:
<span>In ionic compounds, <u>Metals</u> lose their valence electrons to form positively charged Cations.
Explanation:
Metals have the ability to loose elctrons readily. For example metals of Group IA and Group IIA readily looses electrons in order to obtain Noble Gas Configuration. On the other hand Non-metals tends to gain electrons and acquire negative charge. While Ions are made when an an element gain or loose electrons. After loosing electrons element get positive charge which is called as Cation while on gaining electron it gets negative charge called as Anion.</span>