Single displacement and combustion reactions are ALWAYS redox.
Answer:
A) E° = 4.40 V
B) ΔG° = -8.49 × 10⁵ J
Explanation:
Let's consider the following redox reaction.
2 Li(s) +Cl₂(g) → 2 Li⁺(aq) + 2 Cl⁻(aq)
We can write the corresponding half-reactions.
Cathode (reduction): Cl₂(g) + 2 e⁻ → 2 Cl⁻(aq) E°red = 1.36 V
Anode (oxidation): 2 Li(s) → 2 Li⁺(aq) + 2 e⁻ E°red = -3.04
<em>A) Calculate the cell potential of this reaction under standard reaction conditions.</em>
The standard cell potential (E°) is the difference between the reduction potential of the cathode and the reduction potential of the anode.
E° = E°red, cat - E°red, an = 1.36 V - (-3.04 V) 4.40 V
<em>B) Calculate the free energy ΔG° of the reaction.</em>
We can calculate Gibbs free energy (ΔG°) using the following expression.
ΔG° = -n.F.E°
where,
n are the moles of electrons transferred
F is Faraday's constant
ΔG° = - 2 mol × (96468 J/V.mol) × 4.40 V = -8.49 × 10⁵ J
Answer: Option (d) is the correct answer.
Explanation:
A ketone is an organic functional group that contains a carbon and oxygen atom bonded together through a double bond, that is, C=O.
For example, acetone
is a ketone.
Whereas a hydrocodone is a drug which is used to relieve from moderate to sever pain.It is mostly combined with other drugs and resulting in a chemical formula
.
A camphor is a volatile white color substance with chemical formula
. It has aromatic smell and its taste is bitter.
A menthone is also an organic compound with chemical formula
.
Thus, we can conclude that out of the given options the simplest ketone used as an organic solvent is acetone.
<span>The copper would go under oxidation since it will be losing two electrons. Copper starts out with an oxidation number of zero, but in order to balance the compound of CuO with the Oxygen having an oxidation number of -2, a positive 2 is required</span>