Answer:
Explanation:
To calculate the cell potential we use the relation:
Eº cell = Eº oxidation + Eº reduction
Now in order to determine which of the species is going to be oxidized, we have to remember that the more the value of the reduction potential is negative, the greater its tendency to be oxidized is. In electrochemistry we use the values of the reductions potential in the tables for simplicity because the only thing we need to do is change the sign of the reduction potential for the oxized species .
So the species that is going to be oxidized is the Aluminium, and therefore:
Eº cell = -( -1.66 V ) + 0.340 V = 5.06 V
Equally valid is to write the equation as:
Eº cell = Eº reduction for the reduced species - Eº reduction for the oxidized species
These two expressions are equivalent, choose the one you fell more comfortable but be careful with the signs.
Answer:
2.47L
Explanation:
Using the combined gas law equation as follows:
P1V1/T1= P2V2/T2
Where;
P1 = initial pressure (mmHg)
P2 = final pressure (mmHg)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question;
P1 = 705mmHg
P2 = 760mmHg (STP)
V1 = 3.00L
V2 = ?
T1 = 35°C = 35 + 273 = 308K
T2 = 273K (STP)
Using P1V1/T1= P2V2/T2
705 × 3/308 = 760 × V2/273
2115/308 = 760V2/273
Cross multiply
308 × 760V2 = 2115 × 273
234,080V2 = 577,395
V2 = 577,395 ÷ 234,080
V2 = 2.47L
Solvation describes the interaction of solvent with dissolved molecules.
He is the closest. Then:
Ne, N2, CO, NH3.
NH3 is the least closest to ideal.
Chemicals are never classified all depends upon it's physical and chemical properties so the answer is FALSE