First, we determine the energy required to melt one gram of ice. This is given by:
Energy = mass * latent heat of fusion
Energy = 1 g * 334 J/g
Energy = 334 J
Next, we use Planck's equation which is:
Energy = number of photons * Planck's constant * speed of light / wavelength
334 = n * 6.64 x 10⁻³⁴ * 3 x 10⁸ / 5.49 x 10⁻⁶
n = 9.20 x 10²¹
9.20 x 10²¹ photons need to be absorbed by the ice.
Answer:
1
Explanation:
I would say 1 because that configuration has 7 valence electrons. The goal of the atom is to gain a full octet so it just needs to gain 1 more electron to get the full octet. To get the one electron to fill the valence shell it would only need to have 1 covalent bond.
I hope this helps. Let me know if anything is unclear.
Answer:
V₂ = 123.6 L
Explanation:
According to Boyle's law pressure and volume of a gas are inversely related if amount and temperature are kept constant. For the initial and final states the gas law is given as,
P₁ V₁ = P₂ V₂ ----- (1)
Data Given;
P₁ = 103 kPa
V₁ = 30 L
P₂ = 25 kPa
V₂ = ?
Solution:
Solving equation 1 for V₂,
V₂ = P₁ V₁ / P₂
Putting values,
V₂ = (103 kPa × 30 L) ÷ 25 kPa
V₂ = 123.6 L
Result:
As the pressure is decreased from 103 kPa to 25 kPa, therefore, volume has increased from 30 L to 123.6 L.
Electrical energy !! i hope this helped :))