Answer:
2.18 kg
Explanation:
The frequency of a wave in a stretched string f = n/2L√(T/μ) where n = harmonic number, L = length of string, T = tension = mg where m = mass of object on string and g = acceleration due to gravity = 9.8 m/s² and μ = linear density of string.
For string 1, its fundamental frequency f is when n = 1. So,
f = 1/2L√(T/μ) = 1/2L√(mg/μ)
Now for string 1, L = 0.50 m, m = 20 kg and μ = 5 g/m = 0.005 kg/m
substituting the values of the variables into f, we have
f = 1/2L√(mg/μ)
f = 1/2 × 0.50 m√(20 kg × 9.8 m/s²/0.005 kg/m)
f = 1/1 m√(196 kgm/s²/0.005 kg/m)
f = 1/1 m√(39200 m²/s²)
f = 1/1 m × 197.99 m/s
f = 197.99 /s
f = 197.99 Hz
f ≅ 198 Hz
For string 2, at its third harmonic frequency f' is when n = 3. So,
f' = 3/2L√(T/μ) = 3/2L√(mg/μ)
Now for string 2, L = 0.50 m, m = M kg and μ = 5 g/m = 0.005 kg/m
substituting the values of the variables into f, we have
f' = 3/2L√(Mg/μ)
f' = 3/2 × 0.50 m√(M × 9.8 m/s²/0.005 kg/m)
f' = 3/1 m√(M1960 m²/s²kg)
f' = 3/1 m√M√(1960 m²/s²kg)
f' = 3/1 m √M × 44.27 m/s√kg
f' = 132.81√M/s√kg
f' = 132.81√M Hz/√kg
Since the frequency of the beat heard is 2 Hz,
f - f' = 2 Hz
So, 198 Hz - 132.81√M Hz/√kg = 2 Hz
132.81√M Hz/√kg = 198 Hz - 2 Hz
132.81√M Hz/√kg = 196 Hz
√M Hz/√kg = 196 Hz/138.81 Hz
√M/√kg = 1.476
squaring both sides,
[√M/√kg] = (1.476)²
M/kg = 2.178
M = 2.178 kg
M ≅ 2.18 kg