Answer:
351.43mL
Explanation:
To calculate the original volume of hydrogen gas in this question, the Boyle's law equation will be used. Boyle's law equation is:
P1V1 = P2V2
Where; P1 = initial pressure
V1 = initial volume
P2 = final pressure
V2 = final volume
According to this question, the P1= 1.56atm, V1 = ?, P2 = 0.73atm, V2 = 751mL
Hence;
P1V1 = P2V2
1.56 × V1 = 0.73 × 751
1.56 V1 = 548.23
V1 = 548.23/1.56
V1 = 351.43mL
Therefore, the original volume of hydrogen gas is 351.43 mL.
Answer:
A homogeneous mixture has the same uniform appearance and composition throughout. Many homogeneous mixtures are commonly referred to as solutions. A heterogeneous mixture consists of visibly different substances or phases. The three phases or states of matter are gas, liquid, and solid.
<span>Many scientific investigations have provided evidence to support this as the best explanation of the data</span>
Answer:
At 0.58 L of 0.540 M NaOH solution contain 12.5 g NaOH.
Explanation:
Given data:
At volume = ?
Mass of NaOH = 12.5 g
Molarity of solution = 0.540 M
Solution:
First of all we will calculate the number of moles of sodium hydroxide.
Number of moles = mass/molar mass
Number of moles = 12.5 g / 40 g/mol
Number of moles = 0.3125 mol
Volume of NaOH:
Molarity = number of moles / volume in L
Now we will put the values.
0.540 M = 0.3125 mol / volume in L
volume in L = 0.3125 mol / 0.540 mol/L
volume in L = 0.58 L