Answer:
The correct answer is - 9935 years approximately.
Explanation:
Let z be the age in years to be found:
(15300 disintegrations) x (1.0 g / 0.250 g) / (1.84×10^4 disintegrations)
= 3.3260
half life of carbon = (1/2)^(z/5730 yr)
Solve for z
3.3260 = (1/2)^(z/5730)
Take the log of both sides:
log 3.3260 = (z/5730) log (1/2)
log 3.3260 / log (1/2) = z/5730
z = 5730 log 3.3260 / log (1/2)
= 1.73378816*5730
= 9935 years approximately.
Answer:
Mass of liquid: 20.421g
Density= 1.0109405940594 g/mL
Explanation:
Mass of liquid
To find mass of liquid you take the mass of beaker + liquid (171.223g) and subtract it from the Mass of beaker (beaker without the water). The difference is the answer.
171.223g - 150.802g = 20.421g
Density
To find density you use the formula Mass/Volume. Take the Volume given, and the mass of the liquid you just found.
20.421mL/20.421g = 1.0109405940594 g/mL
is the type of orbital hybridization of a central atom that has one lone pair and bonds to four other atoms.
<h3>What is
orbital hybridization?</h3>
In the context of valence bond theory, orbital hybridization (or hybridisation) refers to the idea of combining atomic orbitals to create new hybrid orbitals (with energies, forms, etc., distinct from the component atomic orbitals) suited for the pairing of electrons to form chemical bonds.
For instance, the valence-shell s orbital joins with three valence-shell p orbitals to generate four equivalent sp3 mixes that are arranged in a tetrahedral configuration around the carbon atom to connect to four distinct atoms.
Hybrid orbitals are symmetrically arranged in space and are helpful in the explanation of molecular geometry and atomic bonding characteristics. Usually, atomic orbitals with similar energies are combined to form hybrid orbitals.
Learn more about hybridization
brainly.com/question/22765530
#SPJ4
The air pressure. the air pressure increases as the altitude an object is at increases.
False. They don't borrow electrons at all. They already have their respective electron affinities. This is called as electronegativity, and it's an occurence where it already has its own from its actual structure. It never borrows any electrons at all.