Answer:
Isopropyl propionate
Explanation:
1. Information from formula
The formula is C₆H₁₂O₂. A six-carbon alkane would have the formula C₆H₁₄. The deficiency of two H atoms indicates the presence of either a ring or a double bond.
2. Information from the spectrum
(a) Triplet-quartet
A 3H triplet and a 2H quartet is the classic pattern for a CH₃CH₂- (ethyl) group
(b) Septet-doublet
A 1H septet and a 6H doublet is the classic pattern for a -CH(CH₃)₂ (isopropyl) group
(c) The rest of the molecule
The ethyl and isopropyl groups together add up to C₇H₁₂.
The rest of the molecule must have the formula CO₂ and one unit of unsaturation. That must be a C=O group.
The compound is either
CH₃CH₂-COO-CH(CH₃)₂ or (CH₃)₂CH-COO-CH₂CH₃.
(d) Well, which is it?
The O atom of the ester function should have the greatest effect on the H atom on the adjacent carbon atom.
The CH of an isopropyl is normally at 1.7. The adjacent O atom should pull it down perhaps 3.2 units to 4.9.
The CH₂ of an ethyl group is normally at 1.2. The adjacent O atom should pull it down to about 4.4.
We see a signal at 5.0 but none near 4.4. The compound is isopropyl propionate.
3. Summary
My peak assignments are shown in the diagram below.
The correct answer would be O
2
Methane CH4 CH4 1 hexane C6H14 CH3(CH2)4CH3 5
ethane C2H6 CH3CH3 1 heptane C7H16 CH3(CH2)5CH3 9
propane C3H8 CH3CH2CH3 1 octane C8H18 CH3(CH2)6CH3 18
butane C4H10 CH3CH2CH2CH3 2 nonane C9H20 CH3(CH2)7CH3 35
pentane C5H12 CH3(CH2)3CH3 3 decane C10H22 CH3(CH2)8CH3 75
<h2>Answer:</h2>
A pure metal has specific properties. Sometimes we need that metal but with modified properties. So for the modification of properties we make alloys.
<h3>Explanation;</h3>
- An alloy is a mixture of two elements, one of which is a metal.
- Alloys often have properties that are different to the metals they contain.
- This makes them more useful than the pure metals alone.
- For example, alloys are often harder than the metal they contain.
Explanation:
Use the density formula to determine the volume of the piece of metal.
density
=
mass
volume
Rearrange the equation to isolate volume.
volume
=
mass
density
volume
=
147
g
7.00
g
mL
=
21.0 mL
The final volume in the cylinder after adding the piece of metal is
20.0 mL
+
21.0 mL
=
41.0 mL