Answer:
When have passed 3.9[s], since James threw the ball.
Explanation:
First, we analyze the ball thrown by James and we will find the final height and velocity by the time two seconds have passed.
We'll use the kinematics equations to find these two unknowns.
![y=y_{0} +v_{0} *t+\frac{1}{2} *g*t^{2} \\where:\\y= elevation [m]\\y_{0}=initial height [m]\\v_{0}= initial velocity [m/s] =41.67[m/s]\\t = time passed [s]\\g= gravity [m/s^2]=9.81[m/s^2]\\Now replacing:\\y=0+41.67 *(2)-\frac{1}{2} *(9.81)*(2)^{2} \\\\y=63.72[m]\\](https://tex.z-dn.net/?f=y%3Dy_%7B0%7D%20%2Bv_%7B0%7D%20%2At%2B%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2At%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cy%3D%20elevation%20%5Bm%5D%5C%5Cy_%7B0%7D%3Dinitial%20height%20%5Bm%5D%5C%5Cv_%7B0%7D%3D%20initial%20velocity%20%5Bm%2Fs%5D%20%3D41.67%5Bm%2Fs%5D%5C%5Ct%20%3D%20time%20passed%20%5Bs%5D%5C%5Cg%3D%20gravity%20%5Bm%2Fs%5E2%5D%3D9.81%5Bm%2Fs%5E2%5D%5C%5CNow%20replacing%3A%5C%5Cy%3D0%2B41.67%20%2A%282%29-%5Cfrac%7B1%7D%7B2%7D%20%2A%289.81%29%2A%282%29%5E%7B2%7D%20%5C%5C%5C%5Cy%3D63.72%5Bm%5D%5C%5C)
Note: The sign for the gravity is minus because it is acting against the movement.
Now we can find the velocity after 2 seconds.
![v_{f} =v_{o} +g*t\\replacing:\\v_{f} =41.67-(9.81)*(2)\\\\v_{f}=22.05[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bo%7D%20%2Bg%2At%5C%5Creplacing%3A%5C%5Cv_%7Bf%7D%20%3D41.67-%289.81%29%2A%282%29%5C%5C%5C%5Cv_%7Bf%7D%3D22.05%5Bm%2Fs%5D)
Note: The sign for the gravity is minus because it is acting against the movement.
Now we can take these values calculated as initial values, taking into account that two seconds have already passed. In this way, we can find the time, through the equations of kinematics.

As we can see the equation is based on Time (t).
Now we can establish with the conditions of the ball launched by David a new equation for y (elevation) in function of t, then we match these equations and find time t
![y=y_{o} +v_{o} *t+\frac{1}{2} *g*t^{2} \\where:\\v_{o} =55.56[m/s] = initial velocity\\y_{o} =0[m]\\now replacing\\63.72 +22.05 *t-(4.905)*t^{2} =0 +55.56 *t-(4.905)*t^{2} \\63.72 +22.05 *t =0 +55.56 *t\\63.72 = 33.51*t\\t=1.9[s]](https://tex.z-dn.net/?f=y%3Dy_%7Bo%7D%20%2Bv_%7Bo%7D%20%2At%2B%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2At%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cv_%7Bo%7D%20%3D55.56%5Bm%2Fs%5D%20%3D%20initial%20velocity%5C%5Cy_%7Bo%7D%20%3D0%5Bm%5D%5C%5Cnow%20replacing%5C%5C63.72%20%2B22.05%20%2At-%284.905%29%2At%5E%7B2%7D%20%3D0%20%2B55.56%20%2At-%284.905%29%2At%5E%7B2%7D%20%5C%5C63.72%20%2B22.05%20%2At%20%3D0%20%2B55.56%20%2At%5C%5C63.72%20%3D%2033.51%2At%5C%5Ct%3D1.9%5Bs%5D)
Then the time when both balls are going to be the same height will be when 2 [s] plus 1.9 [s] have passed after David throws the ball.
Time = 2 + 1.9 = 3.9[s]
Answer:
Explanation:
1) Hypermetropia (better known as Farsighted- this is why nearby objects seem blurry for him)
2) In such instances, image are typically formed farther from the near point
3) Such defects are quite common so there are common procedures such as using convex lens which can restore the sight to normal.
Answer:
Explanation:
separation between two gaps, d = 5 cm
angle between central and second order maxima, θ = 0.52°
use
d Sinθ = n λ
n = 2
0.05 x Sin 0.52° = 2 x λ
λ = 2.27 x 10^-4 m
λ = 226.9 micro metre
Explanation:
It is given that,
A planet were discovered between the sun and Mercury, with a circular orbit of radius equal to 2/3 of the average orbit radius of Mercury.
Mass of the Sun, 
Radius of Mercury's orbit, 
Radius of discovered planet, 

Let T is the orbital period of such a planet. Using Kepler's third law of planetary motion as :




T = 4135214.625 s
or
T = 47.86 days
So, the orbital period of such a planet is 47.86 days. Hence, this is the required solution.
They should look for <span>a report from an independent scientific research firm,
even if they have to pay for it.
In preparing its report, the firm would have already surveyed many of the </span>
<span>citizens from several other towns that currently add fluoride to their water,
plus a lot of other relevant medical research on the subject.</span>