Answer: The density of Ammonia is 0.648 g/l
Explanation:
Density = Mass/ Volume
Mass of one mole of Ammonia (NH3) = 17.031g
Volume =?
Using the ideal gas law we can determine the volume.
PV = nRT
P = 0.913 atm, V= ?, n = 1, R = 0.08206 L.atm/K, and T= 293K
Make V the subject of the formular, we then have;
V= nRT/ P = 1 mol x 0.08206 L.atm/ K.mol x 293 / 0.913 atm
V = 24.04358/ 0.913 = 26.3L
Having gotten the value of Volume in this question, we then go back to solve for density.
Density = Mass/ Volume
17.031g/ 26.3L = 0.64756 ≈ 0.648 g/l
Answer: The correct statement is (A new substance is formed and the process can usually NOT be undone.)
Explanation:
A chemical reaction is simply defined as the reaction between two or more elements in which a new substance is formed and the process can usually not be undone. Different types of chemical reaction includes:
-- combination reaction: this occurs when two or more reactants form a product. For example: In the burning of coal, It combines with oxygen to produce carbon dioxide. Also in the burning of wood, carbon dioxide is given off and ashes are formed. Because new substance is being formed, they often can't be undone. The ashes formed can't be changed back into wood. Other types of chemical reaction are listed below.
-- Decomposition reaction
-- Single displacement reaction
-- Double displacement reaction
-- combustion reaction
-- Redox reaction
For the product of a chemical reaction to be undone (reversed), it has to undergo another chemical process different from the one that produced it.
Answer is: the amu of a sodium atom is 23.
The unified atomic mass unit (amu) is a standard unit of atom mass.
One unified atomic mass unit is approximately the mass of one nucleon (proton or neutron).
The unified atomic mass unit is equal 1.66·10⁻²⁷ kg.
n(p⁺) = 11; number of protons in sodium atom.
n(n°) = 12; number of neutrons of sodium atom.
n(p⁺ + n°) = 11 + 12.
n(p⁺ + n°) = 23; number of nucleons in sodium atom.
The answer would be C there would be 6 nonbonding electrons and 2 bonding electrons.