Answer:
Here's what I get
Explanation:
The Lewis structure of SO₃ consists of a central sulfur atom double-bonded to each of three oxygen atoms that points to the corners of an equilateral triangle.
A ball-and-stick model of SO₃ is shown below.
C. Aluminum (Al) oxidized, zinc (Zn) reduced
<h3>Further explanation</h3>
Given
Metals that undergo oxidation and reduction
Required
A galvanic cell
Solution
The condition for voltaic cells is that they can react spontaneously, indicated by a positive cell potential.

or:
E ° cell = E ° reduction-E ° oxidation
For the reaction to occur spontaneously (so that it E cell is positive), the E° anode must be less than the E°cathode
If we look at the voltaic series:
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The standard potential value(E°) from left to right in the voltaic series will be greater, so that the metal undergoing an oxidation reaction (acting as an anode) must be located to the left of the reduced metal (as a cathode)
<em />
From the available answer choices, oxidized Al (anode) and reduced Zn (cathode) are voltaic/galvanic cells.
The nitrite ion has one less oxygen than the nitrate ion. Nitrate is NO3-1 while the nitrite ion is NO2-.
Answer:
See explanation.
Explanation:
Hello!
In this case, since we know the heat of reaction per gram of reactant and we should know the total energy of reaction, but it is not there, we are going to assume it is 1200 J as usual in these problems, so you can change it to whatever your given heat is.
In such a way, we set up the math as shown below:

Which results:

Best regards!
Answer
Because the two particles have an equal charge, the charges will cancel out and give the atom an overall charge of 0. So, if at atom has 35 protons in the nucleus, we could expect it to have 35 electrons orbiting that nucleus.
Explanation: